Skip to content

marcoralab/mtDNAcn

Repository files navigation

mDNACN

Association of mitochondrial DNA CN with Alzheimer's disease

Ricardos AMPAD files

/sc/orga/projects/LOAD/Data/AMPAD

Location of AMPAD bim files.

/sc/orga/projects/AMPADWGS
/sc/orga/projects/AMPADWGS/RawData
/sc/orga/projects/AMPADWGS/RawDataSinai
/sc/orga/projects/AMPADWGS/RawDataMayo
/sc/orga/projects/LOAD/shea/Projects/mDNACN

ROS/MAP

cogdx

Value Coding n
1 NCI: No cognitive impairment (No impaired domains) 374
2 MCI: Mild cognitive impairment (One impaired domain) and NO other cause of CI 273
3 MCI: Mild cognitive impairment (One impaired domain) AND another cause of CI 20
4 AD: Alzheimer’s dementia and NO other cause of CI (NINCDS PROB AD) 433
5 AD: Alzheimer’s dementia AND another cause of CI (NINCDS POSS AD) 57
6 Other dementia: Other primary cause of dementia 21

msex

Value n
F 779
M 399

race

Value Coding n
1 White 1177
2 Black 1

apoe_genotype

Value n
22 7
23 146
24 22
33 709
34 263
44 18
NA 13

MSBB

NP.1 Neuropathology Category as measured by CERAD

Value Coding n
1 Normal 91
2 Definite AD 161
3 probable AD 41
4 possible AD 40

CDR Clinical Dementia Rating

Value Coding n
0 no dementia 39
0.5 Questionable dementia 43
1 Mild dementia 36
2 Moderate Dementia 41
3 Severe dementia 74
4 Profound dementia 45
5 Terminal Dementia 55

bbscore - Braak Score

Value Coding n
0 13
1 I - transentorhinal 27
2 II - transentorhinal 43
3 III - limbic 49
4 IV - limbic 32
5 V - neocortical 37
6 VI - neocortical 100
NA 22

NIA-Reagan (Kurt)

CERAD / Braak 0 1 2 3 4 5 6
Normal Normal Other Other Other Other Other Other
Possible Low Low Low Low Low Low Low
Probable Low Low Low Intermediate Intermediate Intermediate Intermediate
Definite Low Low Low Intermediate Intermediate High High

NIA-Reagan

CERAD / Braak 1 2 3 4 5 6
Normal No AD No AD - - - -
Possible Low Low - - - -
Probable - - Intermediate Intermediate - -
Definite - - - - High High
CERAD / Braak 0 1 2 3 4 5 6 NA
Normal 12 21 30 20 2 NA NA 6
Possible 1 6 4 16 10 2 1 NA
Probable NA NA 4 12 6 8 8 3
Definite NA NA 5 11 14 27 91 13
Value Coding CERD Braak n
0 No AD Normal I/II
1 Low Possible AD I/II 27
2 Intermediate Probable AD III/IV 43
3 High Definite AD V/V1 49

NIA-AA

Thal CERAD Braak: None or I/II III/IV V/VI
0 None Other§ Other§ Other§
1/2 None - Sparse Low Low Low
Modearte - Frequent Low Intermediate Intermediate
3 Any Low Intermediate Intermediate
4/5 None - Sparse Low Intermediate Intermediate
Modearte - Frequent Low Intermediate High

§ ¶ SEX

Value n
F 216
M 117

apoe

Value n
22 2
23 19
24 1
33 96
34 53
44 3
NA 159
rs429358 rs7412 Name
19:45411941:T:C 19:45412079:C:T NA
C T ε1
T T ε2
T C ε3
C C ε4

RACE

Value Coding n
A Asian 1
B Black 31
H Hispanic 23
U Uknown 1
W White 277

dx

Value n
AD 156
CONTROL 55
OTHER 122

Mayo

diagnosis

Value n
AD 92
Control 100
Pathologic Aging 74
PSP 83

Sex

Value n
F 182
M 167

ApoE

Value n
22 1
23 36
24 2
33 176
34 69
44 9
NA 56

WGS_Source_Tissue_Type

Value n
Cerebellar Cortex 8
Temporal Cortex 341

fastMitoCalc

https://lgsun.irp.nia.nih.gov/hsgu/software/mitoAnalyzer/index.html

Qian, Yong, Thomas J. Butler, Krista Opsahl-Ong, Nicholas S. Giroux, Carlo Sidore, Ramaiah Nagaraja, Francesco Cucca, et al. 2017. “fastMitoCalc: An Ultra-Fast Program to Estimate Mitochondrial DNA Copy Number from Whole-Genome Sequences.” Bioinformatics 33 (9): 1399–1401.

Useage

Whole Genome Sequencing

bsub -J "mDNACN" -P acc_load -q premium -n 2 -R span[hosts=1] -R rusage[mem=16000] -W 01:00 -L /bin/bash -o data/mDNACN.stdout -eo data/mDNACN.stderr \
"perl src/fastMitoCalc/fastMitoCalc.pl -f raw/MAP15387421.final.bam -w data -p src/fastMitoCalc/BaseCoverage"
src/fastMitoCalc/fastMitoCalc.pl -f raw/MAP15387421.final.bam -w data -p src/fastMitoCalc/BaseCoverage

Whole Exome Sequencing

If sequence reads from the mtDNA are not targeted, need to use off target reads only. The requires .bed file of the targeted captures regions for the scpefic exome kit. For example the IDT xGen Exome Research Panel from the UKB.

Extract all off target reads

bedtools intersect -v -abam the.bam -b the.bed -bed | awk '{print $1, $2, $3}' OFS="\t" > test.bed

Extract all off target reads that 50kb away from target reads

  • extract off target reads
  • write out chr, start, end
  • remove values of -1
  • remove off target reads within 50kb
bedtools intersect -v -abam WES.bam -b Targets.bed -bed | \
awk '{print $1, $2, $3}' OFS="\t" | awk '$2!=-1' | \
bedtools window -w 50000 -v -a stdin -b Targets.bed > OffTargets.bed

Subset the number of reads from the .bed file to reduce computation time

  • Select reads maping to autosomes only
  • calculat length of reads and remove any with less then 100bp
  • randomly sample 2% of reads from each chromosome
  • Write out
read_table2('OffTargets.bed', col_names = F, col_types = list(X1 = col_character())) %>%
  filter(X1 %in% c(1:22)) %>%
  mutate(length = X3 - X2) %>%
  filter(length >= 100) %>%
  group_by(X1) %>%
  sample_frac(0.02, replace = F) %>%
  ungroup() %>%
  write_tsv('OffTargetsClean.bed', col_names = F)

fastMitoCalc limited to the regions in the bed file only

perl scr/fastMitoCalc.pl -f WES.bam -b OffTargetsClean.bed -w data -p src/BaseCoverage

About

Association of mitochondrial DNA CN with Alzheimer's disease

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published