Skip to content

lucianomrau/TinyML_Anomaly_Detection_for_Industrial_Machines_with_Periodic_Duty_Cycles

Repository files navigation

Tinyml anomaly detection for industrial machines with periodic duty cycles

Duty cycles

Pattern recognition

Code associated with the publication "Tinyml anomaly detection for industrial machines with periodic duty cycles" at the Sensor Application Symposium 2024. It contains a jupyter notebook to train/test the ML models and the c-code to run the models on microcontrollers.

Data

The csv input files ('Confidential_Drive_data_Jun2021.csv', 'Confidential_Drive_data_Okt2021.csv','Confidential_Drive_data_Jan2022.csv' and 'Confidential_Drive_data_April2022.csv') are not available due to conflicts of interest of the parties involved in this project. However, an "input_data.csv" example file is provide to evaluate the models.

Requirements

See the 'requirement.txt' file

Cite

If you use this code or the paper, please cite as:

L. S. Martinez-Rau, Y. Zhang, B. Oelmann and S. Bader, "TinyML Anomaly Detection for Industrial Machines with Periodic Duty Cycles," 2024 IEEE Sensors Applications Symposium (SAS), Naples, Italy, 2024, pp. 1-6, doi: 10.1109/SAS60918.2024.10636584.

or use the BibTeX:

@INPROCEEDINGS{10636584, author={Martinez-Rau, Luciano Sebastian and Zhang, Yuxuan and Oelmann, Bengt and Bader, Sebastian}, booktitle={2024 IEEE Sensors Applications Symposium (SAS)}, title={TinyML Anomaly Detection for Industrial Machines with Periodic Duty Cycles}, year={2024}, volume={}, number={}, pages={1-6}, keywords={Productivity;Machine learning algorithms;Recurrent neural networks;Microcontrollers;Tiny machine learning;Belts;Real-time systems;anomaly detection;conveyor belt;industry 4.0;low-power microcontroller;machine learning;maintenance;tinyML}, doi={10.1109/SAS60918.2024.10636584}}

About

Code associated with the publication "Tinyml anomaly detection for industrial machines with periodic duty cycles" at the Sensor Application Symposium 2024.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published