Skip to content

[FSTORE-1672][4.1] Allow multiple on-demand features to be returned from an on-demand transformation function and allow passing of local variables to a transformation function #468

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Feb 6, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 30 additions & 14 deletions python/hsfs/core/feature_group_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
from __future__ import annotations

import warnings
from typing import List, Union
from typing import Any, Dict, List, Union

from hsfs import engine, feature, util
from hsfs import feature_group as fg
Expand Down Expand Up @@ -49,12 +49,18 @@ def _update_feature_group_schema_on_demand_transformations(
transformed_features = []
dropped_features = []
for tf in feature_group.transformation_functions:
transformed_features.append(
feature.Feature(
tf.hopsworks_udf.output_column_names[0],
tf.hopsworks_udf.return_types[0],
on_demand=True,
)
transformed_features.extend(
[
feature.Feature(
output_column_name,
return_type,
on_demand=True,
)
for output_column_name, return_type in zip(
tf.hopsworks_udf.output_column_names,
tf.hopsworks_udf.return_types,
)
]
)
if tf.hopsworks_udf.dropped_features:
dropped_features.extend(tf.hopsworks_udf.dropped_features)
Expand Down Expand Up @@ -141,6 +147,8 @@ def insert(
storage,
write_options,
validation_options: dict = None,
transformation_context: Dict[str, Any] = None,
transform: bool = True,
):
dataframe_features = engine.get_instance().parse_schema_feature_group(
feature_dataframe,
Expand All @@ -152,16 +160,20 @@ def insert(
if (
not isinstance(feature_group, fg.ExternalFeatureGroup)
and feature_group.transformation_functions
and transform
):
feature_dataframe = engine.get_instance()._apply_transformation_function(
feature_group.transformation_functions, feature_dataframe
feature_group.transformation_functions,
feature_dataframe,
transformation_context=transformation_context,
)

dataframe_features = (
self._update_feature_group_schema_on_demand_transformations(
feature_group=feature_group, features=dataframe_features
dataframe_features = (
self._update_feature_group_schema_on_demand_transformations(
feature_group=feature_group, features=dataframe_features
)
)
)

util.validate_embedding_feature_type(
feature_group.embedding_index, dataframe_features
)
Expand Down Expand Up @@ -361,6 +373,8 @@ def insert_stream(
timeout,
checkpoint_dir,
write_options,
transformation_context: Dict[str, Any] = None,
transform: bool = True,
):
if not feature_group.online_enabled and not feature_group.stream:
raise exceptions.FeatureStoreException(
Expand All @@ -377,9 +391,11 @@ def insert_stream(
)
)

if feature_group.transformation_functions:
if feature_group.transformation_functions and transform:
dataframe = engine.get_instance()._apply_transformation_function(
feature_group.transformation_functions, dataframe
feature_group.transformation_functions,
dataframe,
transformation_context=transformation_context,
)

util.validate_embedding_feature_type(
Expand Down
13 changes: 12 additions & 1 deletion python/hsfs/core/feature_view_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -392,6 +392,7 @@ def create_training_dataset(
primary_keys=False,
event_time=False,
training_helper_columns=False,
transformation_context: Dict[str, Any] = None,
):
self._set_event_time(feature_view_obj, training_dataset_obj)
updated_instance = self._create_training_data_metadata(
Expand All @@ -405,6 +406,7 @@ def create_training_dataset(
primary_keys=primary_keys,
event_time=event_time,
training_helper_columns=training_helper_columns,
transformation_context=transformation_context,
)
return updated_instance, td_job

Expand All @@ -420,6 +422,7 @@ def get_training_data(
event_time=False,
training_helper_columns=False,
dataframe_type="default",
transformation_context: Dict[str, Any] = None,
):
# check if provided td version has already existed.
if training_dataset_version:
Expand Down Expand Up @@ -497,6 +500,7 @@ def get_training_data(
read_options,
dataframe_type,
training_dataset_version,
transformation_context=transformation_context,
)
self.compute_training_dataset_statistics(
feature_view_obj, td_updated, split_df
Expand Down Expand Up @@ -581,6 +585,7 @@ def recreate_training_dataset(
statistics_config,
user_write_options,
spine=None,
transformation_context: Dict[str, Any] = None,
):
training_dataset_obj = self._get_training_dataset_metadata(
feature_view_obj, training_dataset_version
Expand All @@ -597,6 +602,7 @@ def recreate_training_dataset(
user_write_options,
training_dataset_obj=training_dataset_obj,
spine=spine,
transformation_context=transformation_context,
)
# Set training dataset schema after training dataset has been generated
training_dataset_obj.schema = self.get_training_dataset_schema(
Expand Down Expand Up @@ -757,6 +763,7 @@ def compute_training_dataset(
primary_keys=False,
event_time=False,
training_helper_columns=False,
transformation_context: Dict[str, Any] = None,
):
if training_dataset_obj:
pass
Expand Down Expand Up @@ -791,6 +798,7 @@ def compute_training_dataset(
user_write_options,
self._OVERWRITE,
feature_view_obj=feature_view_obj,
transformation_context=transformation_context,
)

# Set training dataset schema after training dataset has been generated
Expand Down Expand Up @@ -913,6 +921,7 @@ def get_batch_data(
inference_helper_columns=False,
dataframe_type="default",
transformed=True,
transformation_context: Dict[str, Any] = None,
):
self._check_feature_group_accessibility(feature_view_obj)

Expand All @@ -936,7 +945,9 @@ def get_batch_data(
).read(read_options=read_options, dataframe_type=dataframe_type)
if transformation_functions and transformed:
return engine.get_instance()._apply_transformation_function(
transformation_functions, dataset=feature_dataframe
transformation_functions,
dataset=feature_dataframe,
transformation_context=transformation_context,
)
else:
return feature_dataframe
Expand Down
Loading
Loading