Skip to content

[mlir][MemRef] Add support for emulating narrow floats #148036

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 33 additions & 11 deletions mlir/lib/Dialect/MemRef/Transforms/EmulateNarrowType.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -323,19 +323,28 @@ struct ConvertMemRefLoad final : OpConversionPattern<memref::LoadOp> {
// It is not clear if this case actually happens in practice, but we keep
// the operations just in case. Otherwise, if the arith computation bitwidth
// is different from the emulated bitwidth we truncate the result.
Operation *result;
Value result;
auto resultTy = getTypeConverter()->convertType(oldElementType);
if (resultTy == convertedElementType) {
auto conversionTy =
resultTy.isInteger()
? resultTy
: IntegerType::get(rewriter.getContext(),
resultTy.getIntOrFloatBitWidth());
if (conversionTy == convertedElementType) {
auto mask = rewriter.create<arith::ConstantOp>(
loc, convertedElementType,
rewriter.getIntegerAttr(convertedElementType, (1 << srcBits) - 1));

result = rewriter.create<arith::AndIOp>(loc, bitsLoad, mask);
} else {
result = rewriter.create<arith::TruncIOp>(loc, resultTy, bitsLoad);
result = rewriter.create<arith::TruncIOp>(loc, conversionTy, bitsLoad);
}

rewriter.replaceOp(op, result->getResult(0));
if (conversionTy != resultTy) {
result = rewriter.create<arith::BitcastOp>(loc, resultTy, result);
}

rewriter.replaceOp(op, result);
return success();
}
};
Expand Down Expand Up @@ -415,8 +424,18 @@ struct ConvertMemrefStore final : OpConversionPattern<memref::StoreOp> {
}

Location loc = op.getLoc();
Value extendedInput = rewriter.create<arith::ExtUIOp>(loc, dstIntegerType,
adaptor.getValue());

// Pad the input value with 0s on the left.
Value input = adaptor.getValue();
if (!input.getType().isInteger()) {
input = rewriter.create<arith::BitcastOp>(
loc,
IntegerType::get(rewriter.getContext(),
input.getType().getIntOrFloatBitWidth()),
input);
}
Value extendedInput =
rewriter.create<arith::ExtUIOp>(loc, dstIntegerType, input);

// Special case 0-rank memref stores. No need for masking.
if (convertedType.getRank() == 0) {
Expand Down Expand Up @@ -619,11 +638,11 @@ void memref::populateMemRefNarrowTypeEmulationConversions(
arith::NarrowTypeEmulationConverter &typeConverter) {
typeConverter.addConversion(
[&typeConverter](MemRefType ty) -> std::optional<Type> {
auto intTy = dyn_cast<IntegerType>(ty.getElementType());
if (!intTy)
Type elementType = ty.getElementType();
if (!elementType.isIntOrFloat())
return ty;

unsigned width = intTy.getWidth();
unsigned width = elementType.getIntOrFloatBitWidth();
unsigned loadStoreWidth = typeConverter.getLoadStoreBitwidth();
if (width >= loadStoreWidth)
return ty;
Expand All @@ -636,8 +655,11 @@ void memref::populateMemRefNarrowTypeEmulationConversions(
if (!strides.empty() && strides.back() != 1)
return nullptr;

auto newElemTy = IntegerType::get(ty.getContext(), loadStoreWidth,
intTy.getSignedness());
auto newElemTy = IntegerType::get(
ty.getContext(), loadStoreWidth,
elementType.isInteger()
? cast<IntegerType>(elementType).getSignedness()
: IntegerType::SignednessSemantics::Signless);
if (!newElemTy)
return nullptr;

Expand Down
14 changes: 12 additions & 2 deletions mlir/lib/Dialect/Vector/Transforms/VectorEmulateNarrowType.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1268,8 +1268,18 @@ struct ConvertVectorTransferRead final
bool isDivisibleInSize =
fitsInMultiByteContainerTy(op.getVectorType(), containerElemTy);

auto newPadding = rewriter.create<arith::ExtUIOp>(loc, containerElemTy,
adaptor.getPadding());
// Pad the padding value with 0s on the left. These bits are discarded and
// thus their values don't matter.
Value padding = adaptor.getPadding();
if (!padding.getType().isInteger()) {
padding = rewriter.create<arith::BitcastOp>(
loc,
IntegerType::get(rewriter.getContext(),
padding.getType().getIntOrFloatBitWidth()),
padding);
}
auto newPadding =
rewriter.create<arith::ExtUIOp>(loc, containerElemTy, padding);

auto stridedMetadata =
rewriter.create<memref::ExtractStridedMetadataOp>(loc, op.getBase());
Expand Down
58 changes: 58 additions & 0 deletions mlir/test/Dialect/MemRef/emulate-narrow-type.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -61,6 +61,41 @@ func.func @memref_load_i4(%arg0: index) -> i4 {

// -----

func.func @memref_load_f4(%arg0: index) -> f4E2M1FN {
%0 = memref.alloc() : memref<5xf4E2M1FN>
%1 = memref.load %0[%arg0] : memref<5xf4E2M1FN>
return %1 : f4E2M1FN
}
// CHECK-DAG: #[[MAP0:.+]] = affine_map<()[s0] -> (s0 floordiv 2)>
// CHECK-DAG: #[[MAP1:.+]] = affine_map<()[s0] -> (s0 * 4 - (s0 floordiv 2) * 8)
// CHECK: func @memref_load_f4(
// CHECK-SAME: %[[ARG0:.+]]: index
// CHECK: %[[ALLOC:.+]] = memref.alloc() : memref<3xi8>
// CHECK: %[[INDEX:.+]] = affine.apply #[[MAP0]]()[%[[ARG0]]]
// CHECK: %[[LOADVAL:.+]] = memref.load %[[ALLOC]][%[[INDEX]]]
// CHECK: %[[BITOFFSET:.+]] = affine.apply #[[MAP1]]()[%[[ARG0]]]
// CHECK: %[[CAST:.+]] = arith.index_cast %[[BITOFFSET]] : index to i8
// CHECK: %[[SHIFTRT:.+]] = arith.shrsi %[[LOADVAL]], %[[CAST]]
// CHECK: %[[TRUNC:.+]] = arith.trunci %[[SHIFTRT]] : i8 to i4
// CHECK: %[[BC:.+]] = arith.bitcast %[[TRUNC]] : i4 to f4E2M1FN
// CHECK: return %[[BC]]

// CHECK32-DAG: #[[MAP0:.+]] = affine_map<()[s0] -> (s0 floordiv 8)>
// CHECK32-DAG: #[[MAP1:.+]] = affine_map<()[s0] -> (s0 * 4 - (s0 floordiv 8) * 32)
// CHECK32: func @memref_load_f4(
// CHECK32-SAME: %[[ARG0:.+]]: index
// CHECK32: %[[ALLOC:.+]] = memref.alloc() : memref<1xi32>
// CHECK32: %[[INDEX:.+]] = affine.apply #[[MAP0]]()[%[[ARG0]]]
// CHECK32: %[[LOADVAL:.+]] = memref.load %[[ALLOC]][%[[INDEX]]]
// CHECK32: %[[BITOFFSET:.+]] = affine.apply #[[MAP1]]()[%[[ARG0]]]
// CHECK32: %[[CAST:.+]] = arith.index_cast %[[BITOFFSET]] : index to i32
// CHECK32: %[[SHIFTRT:.+]] = arith.shrsi %[[LOADVAL]], %[[CAST]]
// CHECK32: %[[TRUNC:.+]] = arith.trunci %[[SHIFTRT]] : i32 to i4
// CHECK32: %[[BC:.+]] = arith.bitcast %[[TRUNC]] : i4 to f4E2M1FN
// CHECK32: return %[[BC]]

// -----

func.func @memref_load_i4_rank2(%arg0: index, %arg1: index) -> i4 {
%0 = memref.alloc() : memref<3x125xi4>
%align0 = memref.assume_alignment %0, 64 : memref<3x125xi4>
Expand Down Expand Up @@ -470,6 +505,29 @@ func.func @rank_zero_memref_store(%arg0: i4) -> () {

// -----

func.func @rank_zero_memref_store_f4(%arg0: f4E2M1FN) -> () {
%0 = memref.alloc() : memref<f4E2M1FN>
memref.store %arg0, %0[] : memref<f4E2M1FN>
return
}
// CHECK-LABEL: func @rank_zero_memref
// CHECK-SAME: %[[ARG0:.+]]: f4E2M1FN
// CHECK: %[[ALLOC:.+]] = memref.alloc() : memref<i8>
// CHECK: %[[BC:.+]] = arith.bitcast %[[ARG0]] : f4E2M1FN to i4
// CHECK: %[[EXTUI:.+]] = arith.extui %[[BC]] : i4 to i8
// CHECK: %[[WRITE_RMW:.+]] = memref.atomic_rmw assign %[[EXTUI]], %[[ALLOC]][] : (i8, memref<i8>) -> i8
// CHECK: return

// CHECK32-LABEL: func @rank_zero_memref
// CHECK32-SAME: %[[ARG0:.+]]: f4E2M1FN
// CHECK32: %[[ALLOC:.+]] = memref.alloc() : memref<i32>
// CHECK32: %[[BC:.+]] = arith.bitcast %[[ARG0]] : f4E2M1FN to i4
// CHECK32: %[[EXTUI:.+]] = arith.extui %[[BC]] : i4 to i32
// CHECK32: %[[WRITE_RMW:.+]] = memref.atomic_rmw assign %[[EXTUI]], %[[ALLOC]][] : (i32, memref<i32>) -> i32
// CHECK32: return

// -----

func.func @memref_collapse_shape_i4(%idx0 : index, %idx1 : index) -> i4 {
%arr = memref.alloc() : memref<32x8x128xi4>
%collapse = memref.collapse_shape %arr[[0, 1], [2]] : memref<32x8x128xi4> into memref<256x128xi4>
Expand Down
78 changes: 78 additions & 0 deletions mlir/test/Dialect/Vector/vector-emulate-narrow-type.mlir
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why do we add tests for vector.load and vector.store? I don't see relevant changes to those patterns.

FYI, currently the ConvertVectorStore pattern could be diverged because we dup the logic to IREE to drop a revert. IREE has its own IREEConvertVectorStore that reverts the change. The change itself is correct to handle incomplete store properly, but IREE assumes that the store is always aligned because how we decide tile sizes. See iree-org/iree#20645 (comment) for more details.

Ideally, we need someone to break the patterns into two sets of patterns:

  • Assume that they are always aligned, which generates simpler code.
  • No assumption, so it goes with the generic path.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

yeah there is no relevant change for vector.load/store so I can drop those tests. They are mainly just making sure float types are still handled properly by those patterns, but the others cover it well enough.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think it makes sense to have direct tests for them, otherwise it could be struggled to triage and re-add the tests. Can you add such information to the PR description?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Added a quick comment about it, does that look good to you?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks, it looks good to me! I'll review the change soon.

Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,31 @@ func.func @vector_load_i4(%arg1: index, %arg2: index) -> vector<3x8xi4> {

// -----

func.func @vector_load_f4(%arg1: index, %arg2: index) -> vector<3x8xf4E2M1FN> {
%0 = memref.alloc() : memref<3x8xf4E2M1FN>
%cst = arith.constant dense<0.0> : vector<3x8xf4E2M1FN>
%1 = vector.load %0[%arg1, %arg2] : memref<3x8xf4E2M1FN>, vector<8xf4E2M1FN>
%2 = vector.insert %1, %cst [0] : vector<8xf4E2M1FN> into vector<3x8xf4E2M1FN>
return %2 : vector<3x8xf4E2M1FN>
}
// CHECK-DAG: #[[MAP:.+]] = affine_map<()[s0, s1] -> (s0 * 4 + s1 floordiv 2)>
// CHECK: func @vector_load_f4
// CHECK-SAME: (%[[ARG0:[a-zA-Z0-9]+]]: index, %[[ARG1:[a-zA-Z0-9]+]]: index)
// CHECK: %[[ALLOC:.+]] = memref.alloc() : memref<12xi8>
// CHECK: %[[INDEX:.+]] = affine.apply #[[MAP]]()[%[[ARG0]], %[[ARG1]]]
// CHECK: %[[VEC:.+]] = vector.load %[[ALLOC]][%[[INDEX]]] : memref<12xi8>, vector<4xi8>
// CHECK: %[[VEC_F4:.+]] = vector.bitcast %[[VEC]] : vector<4xi8> to vector<8xf4E2M1FN>

// CHECK32-DAG: #[[MAP:.+]] = affine_map<()[s0, s1] -> (s0 + s1 floordiv 8)>
// CHECK32: func @vector_load_f4
// CHECK32-SAME: (%[[ARG0:[a-zA-Z0-9]+]]: index, %[[ARG1:[a-zA-Z0-9]+]]: index)
// CHECK32: %[[ALLOC:.+]] = memref.alloc() : memref<3xi32>
// CHECK32: %[[INDEX:.+]] = affine.apply #[[MAP]]()[%[[ARG0]], %[[ARG1]]]
// CHECK32: %[[VEC:.+]] = vector.load %[[ALLOC]][%[[INDEX]]] : memref<3xi32>, vector<1xi32>
// CHECK32: %[[VEC_F4:.+]] = vector.bitcast %[[VEC]] : vector<1xi32> to vector<8xf4E2M1FN>

// -----

func.func @vector_load_i4_dynamic(%arg0 : index, %arg1 : index, %arg2 : index, %arg3 : index) -> vector<8xi4> {
%0 = memref.alloc(%arg0, %arg1) : memref<?x?xi4>
%1 = vector.load %0[%arg2, %arg3] : memref<?x?xi4>, vector<8xi4>
Expand Down Expand Up @@ -119,6 +144,37 @@ func.func @vector_transfer_read_i4(%arg1: index, %arg2: index) -> vector<8xi4> {

// -----

func.func @vector_transfer_read_f4(%arg1: index, %arg2: index) -> vector<8xf4E2M1FN> {
%c0 = arith.constant 0.0 : f4E2M1FN
%0 = memref.alloc() : memref<3x8xf4E2M1FN>
%1 = vector.transfer_read %0[%arg1, %arg2], %c0 {in_bounds = [true]} :
memref<3x8xf4E2M1FN>, vector<8xf4E2M1FN>
return %1 : vector<8xf4E2M1FN>
}
// CHECK-DAG: #[[MAP:.+]] = affine_map<()[s0, s1] -> (s0 * 4 + s1 floordiv 2)>
// CHECK: func @vector_transfer_read_f4
// CHECK-SAME: (%[[ARG0:[a-zA-Z0-9]+]]: index, %[[ARG1:[a-zA-Z0-9]+]]: index)
// CHECK: %[[CONST:.+]] = arith.constant 0.{{0+}}e+00 : f4E2M1FN
// CHECK: %[[ALLOC:.+]] = memref.alloc() : memref<12xi8>
// CHECK: %[[BC:.+]] = arith.bitcast %[[CONST]] : f4E2M1FN to i4
// CHECK: %[[PAD:.+]] = arith.extui %[[BC]] : i4 to i8
// CHECK: %[[INDEX:.+]] = affine.apply #[[MAP]]()[%[[ARG0]], %[[ARG1]]]
// CHECK: %[[VEC:.+]] = vector.transfer_read %[[ALLOC]][%[[INDEX]]], %[[PAD]] : memref<12xi8>, vector<4xi8>
// CHECK: %[[VEC_F4:.+]] = vector.bitcast %[[VEC]] : vector<4xi8> to vector<8xf4E2M1FN>

// CHECK32-DAG: #[[MAP:.+]] = affine_map<()[s0, s1] -> (s0 + s1 floordiv 8)>
// CHECK32: func @vector_transfer_read_f4
// CHECK32-SAME: (%[[ARG0:[a-zA-Z0-9]+]]: index, %[[ARG1:[a-zA-Z0-9]+]]: index)
// CHECK32: %[[CONST:.+]] = arith.constant 0.{{0+}}e+00 : f4E2M1FN
// CHECK32: %[[ALLOC:.+]] = memref.alloc() : memref<3xi32>
// CHECK32: %[[BC:.+]] = arith.bitcast %[[CONST]] : f4E2M1FN to i4
// CHECK32: %[[PAD:.+]] = arith.extui %[[BC]] : i4 to i32
// CHECK32: %[[INDEX:.+]] = affine.apply #[[MAP]]()[%[[ARG0]], %[[ARG1]]]
// CHECK32: %[[VEC:.+]] = vector.transfer_read %[[ALLOC]][%[[INDEX]]], %[[PAD]] : memref<3xi32>, vector<1xi32>
// CHECK32: %[[VEC_F4:.+]] = vector.bitcast %[[VEC]] : vector<1xi32> to vector<8xf4E2M1FN>

// -----

///----------------------------------------------------------------------------------------
/// vector.maskedload
///----------------------------------------------------------------------------------------
Expand Down Expand Up @@ -439,6 +495,28 @@ func.func @vector_store_i4(%arg0: vector<8xi4>, %arg1: index, %arg2: index) {

// -----

func.func @vector_store_f4(%arg0: vector<8xf4E2M1FN>, %arg1: index, %arg2: index) {
%0 = memref.alloc() : memref<4x8xf4E2M1FN>
vector.store %arg0, %0[%arg1, %arg2] :memref<4x8xf4E2M1FN>, vector<8xf4E2M1FN>
return
}

// CHECK-DAG: #[[MAP:.+]] = affine_map<()[s0, s1] -> (s0 * 4 + s1 floordiv 2)>
// CHECK: func @vector_store_f4
// CHECK: %[[ALLOC:.+]] = memref.alloc() : memref<16xi8>
// CHECK: %[[INDEX:.+]] = affine.apply #[[MAP]]()[%[[ARG1]], %[[ARG2]]]
// CHECK: %[[VEC_I8:.+]] = vector.bitcast %[[ARG0]] : vector<8xf4E2M1FN> to vector<4xi8>
// CHECK: vector.store %[[VEC_I8:.+]], %[[ALLOC:.+]][%[[INDEX:.+]]] : memref<16xi8>, vector<4xi8>

// CHECK32-DAG: #[[MAP:.+]] = affine_map<()[s0, s1] -> (s0 + s1 floordiv 8)>
// CHECK32: func @vector_store_f4
// CHECK32: %[[ALLOC:.+]] = memref.alloc() : memref<4xi32>
// CHECK32: %[[INDEX:.+]] = affine.apply #[[MAP]]()[%[[ARG1]], %[[ARG2]]]
// CHECK32: %[[VEC_I32:.+]] = vector.bitcast %[[ARG0]] : vector<8xf4E2M1FN> to vector<1xi32>
// CHECK32: vector.store %[[VEC_I32:.+]], %[[ALLOC:.+]][%[[INDEX:.+]]] : memref<4xi32>, vector<1xi32>

// -----

// FIXME: This example assumes that the store happens at a byte boundary, but
// that's not guaranteed. Below is a counter-example with specific dimensions:
// vector.store %arg0, %0[0, 3] : memref<2x13xi4>, vector<8xi4>
Expand Down
Loading