Skip to content

[mlir][xegpu] Add initial skeleton implementation for lowering ConvertLayoutOp #146176

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 7 commits into
base: main
Choose a base branch
from

Conversation

chencha3
Copy link
Contributor

@chencha3 chencha3 commented Jun 27, 2025

This PR adds initial skeleton implementation for lowering ConvertLayoutOp. It currently only supports cases where SLM is not needed.

Copy link

github-actions bot commented Jun 27, 2025

✅ With the latest revision this PR passed the C/C++ code formatter.

@chencha3 chencha3 changed the title [mlir][xegpu] Enable support for ConvertLayoutOp [mlir][xegpu] Add initial skeleton implementation for lowering ConvertLayoutOp Jul 9, 2025
@chencha3 chencha3 marked this pull request as ready for review July 9, 2025 22:16
@llvmbot
Copy link
Member

llvmbot commented Jul 9, 2025

@llvm/pr-subscribers-mlir-gpu

@llvm/pr-subscribers-mlir

Author: Chao Chen (chencha3)

Changes

This PR adds initial skeleton implementation for lowering ConvertLayoutOp. It currently only supports cases where SLM is not needed.


Full diff: https://github.com/llvm/llvm-project/pull/146176.diff

9 Files Affected:

  • (modified) mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td (+11-10)
  • (modified) mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td (+2-2)
  • (modified) mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp (+42-19)
  • (modified) mlir/lib/Dialect/XeGPU/Transforms/XeGPUBlocking.cpp (+15)
  • (modified) mlir/lib/Dialect/XeGPU/Transforms/XeGPUWgToSgDistribute.cpp (+49-4)
  • (modified) mlir/lib/Dialect/XeGPU/Utils/XeGPUUtils.cpp (+4)
  • (modified) mlir/test/Dialect/XeGPU/invalid.mlir (+3-11)
  • (modified) mlir/test/Dialect/XeGPU/layout.mlir (+4-4)
  • (modified) mlir/test/Dialect/XeGPU/xegpu-wg-to-sg-rr.mlir (+10)
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
index daab65ec893b8..97887cef684df 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
@@ -918,21 +918,22 @@ def XeGPU_FenceOp: XeGPU_Op<"fence", []> {
 def XeGPU_ConvertLayoutOp: XeGPU_Op<"convert_layout", [Pure, AllTypesMatch<["source", "result"]>]> {
     let summary = "Convert the layout of the input operand";
     let description = [{
-      `convert_layout` adjusts the data distribution across subgroups and/or work-items by modifying
-      the `LayoutAttr`. Both `srcMap` and `resMap` must correspond to the same programming scope, such
-      as workgroup-level (wg) or subgroup-level (sg) code. This operation is not valid once the IR is
-      lowered to WI level because that is the end result of all distributions.
+      `convert_layout` redistribute data across subgroups and/or work-items from the `input_layout` to
+      the `target_layout`. Both `input_layout` and `target_layout` must correspond to the same programming
+      scope, such as workgroup-level (wg) or subgroup-level (sg) code. This operation is not valid once
+      the IR is lowered to WI level because that is the end result of all distributions.
     }];
-    let arguments = (ins XeGPU_Vector2DType: $source,
-                         XeGPU_LayoutAttr: $srcMap,
-                         XeGPU_LayoutAttr: $resMap
-                         );
-    let results = (outs XeGPU_Vector2DType: $result);
+    let arguments = (ins XeGPU_VectorType: $source,
+                         XeGPU_LayoutAttr: $input_layout,
+                         XeGPU_LayoutAttr: $target_layout);
+    let results = (outs XeGPU_VectorType: $result);
     let assemblyFormat = [{
-        $source attr-dict `:` type($source)
+        $source prop-dict attr-dict `:` type($source)
     }];
 
+    let hasFolder = 1;
     let hasVerifier = 1;
+    let hasCanonicalizer = 1;
 }
 
 #endif // MLIR_DIALECT_XEGPU_IR_XEGPUOPS_TD
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
index 84314875c2ae5..af40b3754bd8a 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
@@ -21,8 +21,8 @@ def XeGPU_DpasOprType: VectorOfRankAndType<[1, 2, 3], [XeGPU_ScalarType]>;
 def XeGPU_DpasResType: VectorOfRankAndType<[1, 2], [XeGPU_ScalarType]>;
 def XeGPU_OffsetType: VectorOfRankAndType<[1], [Index]>;
 def XeGPU_MaskType: AnyTypeOf<[VectorOfRankAndType<[1], [I1]>, I1]>;
-def XeGPU_ValueType: AnyTypeOf<[VectorOfRankAndType<[1,2,3,4], [XeGPU_ScalarType]>, XeGPU_ScalarType]>;
-def XeGPU_Vector2DType: VectorOfRankAndType<[2], [XeGPU_ScalarType]>;
+def XeGPU_VectorType: VectorOfRankAndType<[1,2,3,4,5,6], [XeGPU_ScalarType]>;
+def XeGPU_ValueType: AnyTypeOf<[XeGPU_VectorType, XeGPU_ScalarType]>;
 
 // common base class for types in XeGPU dialect
 class XeGPUTypeDef<string name, string typeMnemonic, list<Trait> traits = [],
diff --git a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
index 2793c7a35bc97..97415cc74f928 100644
--- a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
+++ b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
@@ -609,32 +609,55 @@ LogicalResult DpasOp::verify() {
 // XeGPU_ConvertLayoutOp
 //===----------------------------------------------------------------------===//
 LogicalResult ConvertLayoutOp::verify() {
-  auto srcMap = getSrcMapAttr();
-  auto resMap = getResMapAttr();
-  if (!srcMap)
-    return emitOpError("expected srcMap.");
-  if (!resMap)
-    return emitOpError("expected resMap.");
-
-  if (srcMap == resMap)
-    return emitOpError("expected different srcMap and resMap.");
-
-  // both srcMap and resMap should be WgLayout or SgLayout at the same time.
-  if ((!srcMap.isWgLayout() || !resMap.isWgLayout()) &&
-      (!srcMap.isSgLayout() || !resMap.isSgLayout()))
-    return emitOpError(
-        "expected srcMap and resMap be WgLayout or SgLayout at the same time.");
+  auto srcLayout = getInputLayout();
+  auto resLayout = getTargetLayout();
+  if (!srcLayout)
+    return emitOpError("expected input layout.");
+  if (!resLayout)
+    return emitOpError("expected target layout.");
+
+  // both input and target layouts should be WgLayout or SgLayout at the same
+  // time.
+  if ((!srcLayout.isWgLayout() || !resLayout.isWgLayout()) &&
+      (!srcLayout.isSgLayout() || !resLayout.isSgLayout()))
+    return emitOpError("expected input layout and target layout be WgLayout or "
+                       "SgLayout at the same time.");
 
   auto shape = getSource().getType().getShape();
-  if (!XeGPUDialect::isEvenlyDistributable(shape, srcMap))
-    return emitOpError("invalid srcMap, data cannot be evenly distributed.");
+  if (!XeGPUDialect::isEvenlyDistributable(shape, srcLayout))
+    return emitOpError(
+        "invalid input layout, data cannot be evenly distributed.");
 
-  if (!XeGPUDialect::isEvenlyDistributable(shape, resMap))
-    return emitOpError("invalid resMap, data cannot be evenly distributed.");
+  if (!XeGPUDialect::isEvenlyDistributable(shape, resLayout))
+    return emitOpError(
+        "invalid target layout, data cannot be evenly distributed.");
 
   return mlir::success();
 }
 
+OpFoldResult ConvertLayoutOp::fold(FoldAdaptor adaptor) {
+  if (getInputLayout() == getTargetLayout())
+    return getSource();
+  return {};
+}
+
+struct FoldConvertLayoutOp : public OpRewritePattern<xegpu::ConvertLayoutOp> {
+  using OpRewritePattern<xegpu::ConvertLayoutOp>::OpRewritePattern;
+  LogicalResult matchAndRewrite(xegpu::ConvertLayoutOp op,
+                                PatternRewriter &rewriter) const override {
+    if (op.getInputLayout() == op.getTargetLayout()) {
+      rewriter.replaceOp(op, op.getSource());
+      return success();
+    }
+    return failure();
+  }
+};
+
+void ConvertLayoutOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
+                                                  MLIRContext *context) {
+  patterns.add<FoldConvertLayoutOp>(context);
+}
+
 } // namespace xegpu
 } // namespace mlir
 
diff --git a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUBlocking.cpp b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUBlocking.cpp
index 3950e8f70d1ca..06e0c6105df58 100644
--- a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUBlocking.cpp
+++ b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUBlocking.cpp
@@ -78,6 +78,20 @@ resolveUnrealizedConversionCastOp(UnrealizedConversionCastOp castOp) {
   }
 }
 
+struct ConvertLayoutOpPattern
+    : public OpRewritePattern<xegpu::ConvertLayoutOp> {
+  using OpRewritePattern::OpRewritePattern;
+  LogicalResult matchAndRewrite(xegpu::ConvertLayoutOp op,
+                                PatternRewriter &rewriter) const override {
+    xegpu::LayoutAttr input_layout = op.getInputLayoutAttr().dropInstData();
+    xegpu::LayoutAttr target_layout = op.getTargetLayoutAttr().dropInstData();
+    auto newOp = rewriter.createOrFold<xegpu::ConvertLayoutOp>(
+        op.getLoc(), op.getType(), op.getSource(), input_layout, target_layout);
+    rewriter.replaceOp(op, newOp);
+    return success();
+  }
+};
+
 //===------------------------------------------------------------------------===//
 // The XeGPUBlockingPass leverages the unroll patterns for XeGPU and Vector ops
 // to partition operations that process large shapes into multiple operations on
@@ -335,6 +349,7 @@ void XeGPUBlockingPass::runOnOperation() {
   });
 
   RewritePatternSet patterns(ctx);
+  patterns.add<ConvertLayoutOpPattern>(ctx);
 
   vector::UnrollVectorOptions vectorOptions;
   vectorOptions.setNativeShapeFn(options.nativeShape);
diff --git a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUWgToSgDistribute.cpp b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUWgToSgDistribute.cpp
index e3563d10bc6f1..89dcddec752a1 100644
--- a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUWgToSgDistribute.cpp
+++ b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUWgToSgDistribute.cpp
@@ -106,12 +106,12 @@ struct WgToSgCreateNdOp : public OpConversionPattern<xegpu::CreateNdDescOp> {
   using OpConversionPattern<xegpu::CreateNdDescOp>::OpConversionPattern;
 
   // Calculate offset for each subgroup
-  SmallVector<OpFoldResult>
+  static SmallVector<OpFoldResult>
   calculateGlobalOffsets(ConversionPatternRewriter &rewriter, Location loc,
                          const SmallVector<OpFoldResult> &originalOffsets,
                          const SmallVector<Value> &localOffset,
                          const SmallVector<int64_t> &distUnitBaseAddr,
-                         const SmallVector<int64_t> &distUnitShape) const {
+                         const SmallVector<int64_t> &distUnitShape) {
     assert(localOffset.size() == distUnitBaseAddr.size() &&
            "localOffset and distUnitBaseAddr must have the same rank");
 
@@ -390,6 +390,46 @@ struct WgToSgElementwiseOp : public ConversionPattern {
   }
 };
 
+struct WgToSgConvertLayoutOp
+    : public OpConversionPattern<xegpu::ConvertLayoutOp> {
+  using OpConversionPattern<xegpu::ConvertLayoutOp>::OpConversionPattern;
+  LogicalResult
+  matchAndRewrite(xegpu::ConvertLayoutOp op, OneToNOpAdaptor adaptor,
+                  ConversionPatternRewriter &rewriter) const override {
+    xegpu::LayoutAttr input = op.getInputLayout();
+    xegpu::LayoutAttr target = op.getTargetLayout();
+
+    if (!input || !target || !input.isWgLayout() || !target.isWgLayout())
+      return rewriter.notifyMatchFailure(
+          op, "Input and target layouts must have subgroup layout");
+
+    DenseI32ArrayAttr inputSgLayout = input.getSgLayout();
+    DenseI32ArrayAttr inputSgData = input.getSgData();
+    DenseI32ArrayAttr targetSgLayout = target.getSgLayout();
+    DenseI32ArrayAttr targetSgData = target.getSgData();
+
+    // TODO: currently we only support for optimal case, where input and
+    // output has the same sg_layout and sg_data, so SLM is not involved.
+    if (inputSgLayout != targetSgLayout || inputSgData != targetSgData)
+      return failure();
+
+    input = input.dropSgLayoutAndData();
+    target = target.dropSgLayoutAndData();
+
+    SmallVector<Value> newOps(adaptor.getSource());
+
+    if (input && target) {
+      for (auto [i, src] : llvm::enumerate(adaptor.getSource())) {
+        auto newOp = rewriter.create<xegpu::ConvertLayoutOp>(
+            op.getLoc(), src.getType(), src, input, target);
+        newOps[i] = newOp;
+      }
+    }
+    rewriter.replaceOpWithMultiple(op, {newOps});
+    return success();
+  }
+};
+
 // Handles UnrealizedConversionCastOp generated during
 // SCFStructuralTypeConversions (step 1). This op may appear as either a
 // target or source materialization for Vector values, e.g.:
@@ -473,8 +513,8 @@ namespace xegpu {
 void populateXeGPUWgToSgDistributePatterns(RewritePatternSet &patterns) {
   patterns.add<WgToSgCreateNdOp, WgToSgLoadNdOp, WgToSgStoreNdOp,
                WgToSgUpdateNdOffsetOp, WgToSgDpasOp, WgToSgPrefetchNdOp,
-               UnrealizedConversionCastOpPattern, WgToSgElementwiseOp>(
-      patterns.getContext());
+               UnrealizedConversionCastOpPattern, WgToSgElementwiseOp,
+               WgToSgConvertLayoutOp>(patterns.getContext());
 }
 } // namespace xegpu
 } // namespace mlir
@@ -581,6 +621,11 @@ void XeGPUWgToSgDistributePass::runOnOperation() {
     return isLegal(layout);
   });
 
+  target.addDynamicallyLegalOp<xegpu::ConvertLayoutOp>(
+      [=](xegpu::ConvertLayoutOp op) -> bool {
+        return isLegal(op.getInputLayout()) && isLegal(op.getTargetLayout());
+      });
+
   target.addDynamicallyLegalDialect<math::MathDialect, arith::ArithDialect>(
       [=](Operation *op) -> std::optional<bool> {
         // Only handle elementwise mappable ops
diff --git a/mlir/lib/Dialect/XeGPU/Utils/XeGPUUtils.cpp b/mlir/lib/Dialect/XeGPU/Utils/XeGPUUtils.cpp
index 6b85a66a8bd36..d5ae3c20e222e 100644
--- a/mlir/lib/Dialect/XeGPU/Utils/XeGPUUtils.cpp
+++ b/mlir/lib/Dialect/XeGPU/Utils/XeGPUUtils.cpp
@@ -124,6 +124,10 @@ xegpu::LayoutAttr xegpu::getLayoutAttr(const Value value) {
     Operation *defOp = result.getDefiningOp();
     assert(defOp && "result must have a defining op");
 
+    // For ConvertLayoutOp, the layout is stored in the targetLayoutAttr
+    if (auto convertOp = dyn_cast<xegpu::ConvertLayoutOp>(defOp))
+      return convertOp.getTargetLayoutAttr();
+
     // for LoadNdOp, the layout is stored in the tensor descriptor
     if (auto loadNd = dyn_cast<xegpu::LoadNdOp>(defOp))
       return getLayoutAttr(loadNd.getTensorDesc());
diff --git a/mlir/test/Dialect/XeGPU/invalid.mlir b/mlir/test/Dialect/XeGPU/invalid.mlir
index a2778cd94d963..65e1d22449bdd 100644
--- a/mlir/test/Dialect/XeGPU/invalid.mlir
+++ b/mlir/test/Dialect/XeGPU/invalid.mlir
@@ -511,19 +511,11 @@ func.func @tensor_desc_scatter_invalid_chunk_size_2D(%src: ui64, %offsets: vecto
   return
 }
 
-// -----
-func.func @convert_layout_same_map(%a: vector<32x64xf16>) {
-  // expected-error@+1 {{expected different srcMap and resMap}}
-  %2 = xegpu.convert_layout %a {srcMap = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>,
-                                resMap = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>} : vector<32x64xf16>
-  gpu.return
-}
-
 // -----
 func.func @convert_layout_unmatch(%a: vector<32x64xf16>) {
-  // expected-error@+1 {{expected srcMap and resMap be WgLayout or SgLayout at the same time}}
-  %2 = xegpu.convert_layout %a {srcMap = #xegpu.layout<sg_layout = [2, 4], sg_data = [16, 16], lane_layout = [1, 16], lane_data = [1, 1]>,
-                                resMap = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>} : vector<32x64xf16>
+  // expected-error@+1 {{expected input layout and target layout be WgLayout or SgLayout at the same time}}
+  %2 = xegpu.convert_layout %a <{input_layout = #xegpu.layout<sg_layout = [2, 4], sg_data = [16, 16], lane_layout = [1, 16], lane_data = [1, 1]>,
+                                target_layout = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>}> : vector<32x64xf16>
   gpu.return
 }
 
diff --git a/mlir/test/Dialect/XeGPU/layout.mlir b/mlir/test/Dialect/XeGPU/layout.mlir
index 7f3ebec225cdf..ef51dfbbfd574 100644
--- a/mlir/test/Dialect/XeGPU/layout.mlir
+++ b/mlir/test/Dialect/XeGPU/layout.mlir
@@ -35,14 +35,14 @@ gpu.func @create_nd_tdesc_wg_1(%src: memref<24x32xf32>) {
 }
 
 gpu.func @convert_layout(%a: vector<32x64xf16>) {
-  %2 = xegpu.convert_layout %a {srcMap = #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>,
-                                resMap = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>} : vector<32x64xf16>
+  %2 = xegpu.convert_layout %a <{input_layout = #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>,
+                                target_layout = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>}> : vector<32x64xf16>
   gpu.return
 }
 
 gpu.func @convert_layout_wg(%a: vector<32x64xf16>) {
-  %2 = xegpu.convert_layout %a {srcMap = #xegpu.layout<sg_layout = [2, 4], sg_data = [16, 16], lane_layout = [1, 16], lane_data = [1, 1]>,
-                                resMap = #xegpu.layout<sg_layout = [4, 2], sg_data = [8, 32], lane_layout = [1, 16], lane_data = [1, 1]>} : vector<32x64xf16>
+  %2 = xegpu.convert_layout %a <{input_layout = #xegpu.layout<sg_layout = [2, 4], sg_data = [16, 16], lane_layout = [1, 16], lane_data = [1, 1]>,
+                                target_layout = #xegpu.layout<sg_layout = [4, 2], sg_data = [8, 32], lane_layout = [1, 16], lane_data = [1, 1]>}> : vector<32x64xf16>
   gpu.return
 }
 
diff --git a/mlir/test/Dialect/XeGPU/xegpu-wg-to-sg-rr.mlir b/mlir/test/Dialect/XeGPU/xegpu-wg-to-sg-rr.mlir
index c6124f90e0f48..6c688f4db6dec 100644
--- a/mlir/test/Dialect/XeGPU/xegpu-wg-to-sg-rr.mlir
+++ b/mlir/test/Dialect/XeGPU/xegpu-wg-to-sg-rr.mlir
@@ -198,4 +198,14 @@ gpu.module @test_round_robin_assignment {
     gpu.return
   }
 
+  gpu.func @convert_layout_optimal(%arg0: memref<32x64xf32>) {
+    %0 = xegpu.create_nd_tdesc %arg0[0, 0] : memref<32x64xf32> -> !xegpu.tensor_desc<32x64xf32, #xegpu.layout<sg_layout = [2, 2], sg_data = [16, 16], inst_data = [16, 16]>>
+    //CHECK-2: xegpu.load_nd {{.*}}  : !xegpu.tensor_desc<16x16xf32, #xegpu.layout<inst_data = [16, 16]>> -> vector<16x16xf32>
+    //CHECK-2: xegpu.convert_layout {{.*}} <{input_layout = #xegpu.layout<inst_data = [16, 16]>, target_layout = #xegpu.layout<inst_data = [8, 16]>}> : vector<16x16xf32>
+    %1 = xegpu.load_nd %0  : !xegpu.tensor_desc<32x64xf32, #xegpu.layout<sg_layout = [2, 2], sg_data = [16, 16], inst_data = [16, 16]>> -> vector<32x64xf32>
+    %2 = xegpu.convert_layout %1 <{input_layout = #xegpu.layout<sg_layout = [2, 2], sg_data = [16, 16], inst_data = [16, 16]>,
+                                   target_layout = #xegpu.layout<sg_layout = [2, 2], sg_data = [16, 16], inst_data = [8, 16]>}> : vector<32x64xf32>
+    gpu.return
+  }
+
 }

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants