Skip to content

[offload][SYCL] Add Module splitting by categories. #131347

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 14 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
64 changes: 64 additions & 0 deletions llvm/include/llvm/Transforms/Utils/SplitModuleByCategory.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
//===-------- SplitModuleByCategory.h - module split ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Functionality to split a module by categories.
//===----------------------------------------------------------------------===//

#ifndef LLVM_TRANSFORM_UTILS_SPLIT_MODULE_BY_CATEGORY_H
#define LLVM_TRANSFORM_UTILS_SPLIT_MODULE_BY_CATEGORY_H

#include "llvm/ADT/STLFunctionalExtras.h"

#include <memory>
#include <optional>
#include <string>

namespace llvm {

class Module;
class Function;

/// Splits the given module \p M into parts. Each output part is passed to
/// \p Callback for further possible processing. Each part corresponds to a
/// subset of the module that is transitively reachable from some entry point
/// group. Each entry point group is defined by \p EntryPointCategorizer (EPC)
/// as follows: 1) If the function is not an entry point, then the Categorizer
/// returns std::nullopt. Therefore, the function doesn't belong to any group.
/// However, the function and global objects can still be associated with some
/// output parts if they are transitively used from some entry points. 2) If the
/// function belongs to an entry point group, then EPC returns an integer which
/// is an identifier of the group. If two entry points belong to one group, then
/// EPC returns the same identifier for both of them.
///
/// Let A and B be global objects in the module. The transitive dependency
/// relation is defined such that: If global object A is used by global object B
/// in any way (e.g., store, bitcast, phi node, call), then "A" -> "B".
/// Transitivity is defined such that: If "A" -> "B" and "B" -> "C", then "A" ->
/// "C". Examples of dependencies:
/// - Function FA calls function FB
/// - Function FA uses global variable GA
/// - Global variable GA references (is initialized with) function FB
/// - Function FA stores the address of function FB somewhere
///
/// The following cases are treated as dependencies between global objects:
/// 1. Global object A is used by global object B in any way (store,
/// bitcast, phi node, call, etc.): an "A" -> "B" edge will be added to the
/// graph;
/// 2. Function A performs an indirect call of a function with signature S, and
/// there is a function B with signature S. An "A" -> "B" edge will be added
/// to the graph;
///
/// FIXME: For now, the algorithm assumes no recursion in the input Module. This
/// will be addressed in the near future.
void splitModuleTransitiveFromEntryPoints(
std::unique_ptr<Module> M,
function_ref<std::optional<int>(const Function &F)> EntryPointCategorizer,
function_ref<void(std::unique_ptr<Module> Part)> Callback);
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It might be helpful to pass the category to the callback in addition to the module. But if this is not needed right now, we can do this later.


} // namespace llvm

#endif // LLVM_TRANSFORM_UTILS_SPLIT_MODULE_BY_CATEGORY_H
1 change: 1 addition & 0 deletions llvm/lib/Transforms/Utils/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,7 @@ add_llvm_component_library(LLVMTransformUtils
SimplifyLibCalls.cpp
SizeOpts.cpp
SplitModule.cpp
SplitModuleByCategory.cpp
StripNonLineTableDebugInfo.cpp
SymbolRewriter.cpp
UnifyFunctionExitNodes.cpp
Expand Down
323 changes: 323 additions & 0 deletions llvm/lib/Transforms/Utils/SplitModuleByCategory.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,323 @@
//===-------- SplitModuleByCategory.cpp - split a module by categories ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// See comments in the header.
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/SplitModuleByCategory.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/Cloning.h"

#include <map>
#include <string>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "split-module-by-category"

namespace {

// A vector that contains a group of function with the same category.
using EntryPointSet = SetVector<const Function *>;

/// Represents a group of functions with one category.
struct EntryPointGroup {
int ID;
EntryPointSet Functions;

EntryPointGroup() = default;

EntryPointGroup(int ID, EntryPointSet &&Functions = EntryPointSet())
: ID(ID), Functions(std::move(Functions)) {}

void clear() { Functions.clear(); }

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void dump() const {
constexpr size_t INDENT = 4;
dbgs().indent(INDENT) << "ENTRY POINTS"
<< " " << ID << " {\n";
for (const Function *F : Functions)
dbgs().indent(INDENT) << " " << F->getName() << "\n";

dbgs().indent(INDENT) << "}\n";
}
#endif
};

/// Annotates an llvm::Module with information necessary to perform and track
/// the result of code (llvm::Module instances) splitting:
/// - entry points group from the module.
class ModuleDesc {
std::unique_ptr<Module> M;
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I assume ModuleDesc "owns" a module after splitting?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ModuleDesc own an initial module and new created modules.

EntryPointGroup EntryPoints;

public:
ModuleDesc(std::unique_ptr<Module> M,
EntryPointGroup &&EntryPoints = EntryPointGroup())
: M(std::move(M)), EntryPoints(std::move(EntryPoints)) {
assert(this->M && "Module should be non-null");
}

Module &getModule() { return *M; }
const Module &getModule() const { return *M; }

std::unique_ptr<Module> releaseModule() {
EntryPoints.clear();
return std::move(M);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void dump() const {
dbgs() << "ModuleDesc[" << M->getName() << "] {\n";
EntryPoints.dump();
dbgs() << "}\n";
}
#endif
};

bool isKernel(const Function &F) {
return F.getCallingConv() == CallingConv::SPIR_KERNEL ||
F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
F.getCallingConv() == CallingConv::PTX_Kernel;
}

// Represents "dependency" or "use" graph of global objects (functions and
// global variables) in a module. It is used during code split to
// understand which global variables and functions (other than entry points)
// should be included into a split module.
//
// Nodes of the graph represent LLVM's GlobalObjects, edges "A" -> "B" represent
// the fact that if "A" is included into a module, then "B" should be included
// as well.
//
// Examples of dependencies which are represented in this graph:
// - Function FA calls function FB
// - Function FA uses global variable GA
// - Global variable GA references (initialized with) function FB
// - Function FA stores address of a function FB somewhere
//
// The following cases are treated as dependencies between global objects:
// 1. Global object A is used by a global object B in any way (store,
// bitcast, phi node, call, etc.): "A" -> "B" edge will be added to the
// graph;
// 2. function A performs an indirect call of a function with signature S and
// there is a function B with signature S. "A" -> "B" edge will be added to
// the graph;
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is a slippery slope. I'm fine with it for now but in reality this doesn't work. We do allow, and execute, way more than perfect signature matches.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm curious what cases you mean which are allowed to be executed.
It would help me to evaluate the way to support them.

I've added a test recently called complex-indirect-call-chain2.ll which checks that and it is not clear how would I support this case without signature matching.

class DependencyGraph {
public:
using GlobalSet = SmallPtrSet<const GlobalValue *, 16>;

DependencyGraph(const Module &M) {
// Group functions by their signature to handle case (2) described above
DenseMap<const FunctionType *, DependencyGraph::GlobalSet>
FuncTypeToFuncsMap;
for (const Function &F : M.functions()) {
// Kernels can't be called (either directly or indirectly).
if (isKernel(F))
continue;

FuncTypeToFuncsMap[F.getFunctionType()].insert(&F);
}

for (const Function &F : M.functions()) {
// case (1), see comment above the class definition
for (const Value *U : F.users())
addUserToGraphRecursively(cast<const User>(U), &F);

// case (2), see comment above the class definition
for (const Instruction &I : instructions(F)) {
const CallBase *CB = dyn_cast<CallBase>(&I);
if (!CB || !CB->isIndirectCall()) // Direct calls were handled above
continue;

const FunctionType *Signature = CB->getFunctionType();
GlobalSet &PotentialCallees = FuncTypeToFuncsMap[Signature];
Graph[&F].insert(PotentialCallees.begin(), PotentialCallees.end());
}
}

// And every global variable (but their handling is a bit simpler)
for (const GlobalVariable &GV : M.globals())
for (const Value *U : GV.users())
addUserToGraphRecursively(cast<const User>(U), &GV);
}

iterator_range<GlobalSet::const_iterator>
dependencies(const GlobalValue *Val) const {
auto It = Graph.find(Val);
return (It == Graph.end())
? make_range(EmptySet.begin(), EmptySet.end())
: make_range(It->second.begin(), It->second.end());
}

private:
void addUserToGraphRecursively(const User *Root, const GlobalValue *V) {
SmallVector<const User *, 8> WorkList;
WorkList.push_back(Root);

while (!WorkList.empty()) {
const User *U = WorkList.pop_back_val();
if (const auto *I = dyn_cast<const Instruction>(U)) {
const Function *UFunc = I->getFunction();
Graph[UFunc].insert(V);
} else if (isa<const Constant>(U)) {
if (const auto *GV = dyn_cast<const GlobalVariable>(U))
Graph[GV].insert(V);
// This could be a global variable or some constant expression (like
// bitcast or gep). We trace users of this constant further to reach
// global objects they are used by and add them to the graph.
for (const User *UU : U->users())
WorkList.push_back(UU);
} else {
llvm_unreachable("Unhandled type of function user");
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This should trigger on metadata, doesn't it?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

From the inheritance hierarchy [1] it doesn't look like we can get a metadata from users(). If you want me to check any specific cases please tell me.

[1] - https://llvm.org/doxygen/classllvm_1_1User.html

}
}
}

DenseMap<const GlobalValue *, GlobalSet> Graph;
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit: this const is not necessary. it can allow to use dyn_cast<xxx>, which looks more LLVM, than dyn_cast<const xxx>.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

That would require me to use const_cast like the following.

void addUserToGraphRecursively(const User *Root, const GlobalValue *V) {
  SmallVector<User *, 8> WorkList;
  WorkList.push_back(const_cast<User *>(Root));
  /// ...
}

Would that be ok in LLVM style?

SmallPtrSet<const GlobalValue *, 1> EmptySet;
};

void collectFunctionsAndGlobalVariablesToExtract(
SetVector<const GlobalValue *> &GVs, const Module &M,
const EntryPointGroup &ModuleEntryPoints, const DependencyGraph &DG) {
// We start with module entry points
for (const Function *F : ModuleEntryPoints.Functions)
GVs.insert(F);

// Non-discardable global variables are also include into the initial set
for (const GlobalVariable &GV : M.globals())
if (!GV.isDiscardableIfUnused())
GVs.insert(&GV);

// GVs has SetVector type. This type inserts a value only if it is not yet
// present there. So, recursion is not expected here.
size_t Idx = 0;
while (Idx < GVs.size()) {
const GlobalValue *Obj = GVs[Idx++];

for (const GlobalValue *Dep : DG.dependencies(Obj)) {
if (const auto *Func = dyn_cast<const Function>(Dep)) {
if (!Func->isDeclaration())
GVs.insert(Func);
} else {
GVs.insert(Dep); // Global variables are added unconditionally
}
}
}
}

ModuleDesc extractSubModule(const Module &M,
const SetVector<const GlobalValue *> &GVs,
EntryPointGroup &&ModuleEntryPoints) {
ValueToValueMapTy VMap;
// Clone definitions only for needed globals. Others will be added as
// declarations and removed later.
std::unique_ptr<Module> SubM = CloneModule(
M, VMap, [&](const GlobalValue *GV) { return GVs.contains(GV); });
// Replace entry points with cloned ones.
EntryPointSet NewEPs;
const EntryPointSet &EPs = ModuleEntryPoints.Functions;
llvm::for_each(
EPs, [&](const Function *F) { NewEPs.insert(cast<Function>(VMap[F])); });
ModuleEntryPoints.Functions = std::move(NewEPs);
return ModuleDesc{std::move(SubM), std::move(ModuleEntryPoints)};
}

// The function produces a copy of input LLVM IR module M with only those
// functions and globals that can be called from entry points that are specified
// in ModuleEntryPoints vector, in addition to the entry point functions.
ModuleDesc extractCallGraph(const Module &M,
EntryPointGroup &&ModuleEntryPoints,
const DependencyGraph &DG) {
SetVector<const GlobalValue *> GVs;
collectFunctionsAndGlobalVariablesToExtract(GVs, M, ModuleEntryPoints, DG);

ModuleDesc SplitM = extractSubModule(M, GVs, std::move(ModuleEntryPoints));
LLVM_DEBUG(SplitM.dump());
return SplitM;
}

using EntryPointGroupVec = SmallVector<EntryPointGroup>;

/// Module Splitter.
/// It gets a module and a collection of entry points groups.
/// Each group specifies subset entry points from input module that should be
/// included in a split module.
class ModuleSplitter {
private:
std::unique_ptr<Module> M;
EntryPointGroupVec Groups;
DependencyGraph DG;

private:
EntryPointGroup drawEntryPointGroup() {
assert(Groups.size() > 0 && "Reached end of entry point groups list.");
EntryPointGroup Group = std::move(Groups.back());
Groups.pop_back();
return Group;
}

public:
ModuleSplitter(std::unique_ptr<Module> Module, EntryPointGroupVec &&GroupVec)
: M(std::move(Module)), Groups(std::move(GroupVec)), DG(*M) {
assert(!Groups.empty() && "Entry points groups collection is empty!");
}

/// Gets next subsequence of entry points in an input module and provides
/// split submodule containing these entry points and their dependencies.
ModuleDesc getNextSplit() {
return extractCallGraph(*M, drawEntryPointGroup(), DG);
}

/// Check that there are still submodules to split.
bool hasMoreSplits() const { return Groups.size() > 0; }
};

EntryPointGroupVec selectEntryPointGroups(
const Module &M, function_ref<std::optional<int>(const Function &F)> EPC) {
// std::map is used here to ensure stable ordering of entry point groups,
// which is based on their contents, this greatly helps LIT tests
// Note: EPC is allowed to return big identifiers. Therefore, we use
// std::map + SmallVector approach here.
std::map<int, EntryPointSet> EntryPointsMap;

for (const auto &F : M.functions())
if (std::optional<int> Category = EPC(F); Category)
EntryPointsMap[*Category].insert(&F);

EntryPointGroupVec Groups;
Groups.reserve(EntryPointsMap.size());
for (auto &[Key, EntryPoints] : EntryPointsMap)
Groups.emplace_back(Key, std::move(EntryPoints));

return Groups;
}

} // namespace

void llvm::splitModuleTransitiveFromEntryPoints(
std::unique_ptr<Module> M,
function_ref<std::optional<int>(const Function &F)> EntryPointCategorizer,
function_ref<void(std::unique_ptr<Module> Part)> Callback) {
EntryPointGroupVec Groups = selectEntryPointGroups(*M, EntryPointCategorizer);
ModuleSplitter Splitter(std::move(M), std::move(Groups));
while (Splitter.hasMoreSplits()) {
ModuleDesc MD = Splitter.getNextSplit();
Callback(std::move(MD.releaseModule()));
}
}
Loading