- Clone the repository
git clone https://github.com/lihong2303/LLM_Inception.git
cd LLM_Inception
- Create
conda
environment and install dependencies.
conda create -n llm_inception python=3.10
conda activate llm_inception
# install PyTorch, take our version for example
conda install pytorch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 cudatoolkit=11.8 -c pytorch
pip install -r requirements.txt
- Eval Single-step Association with:
python eval_singlestep.py \
--data_root Data \
--data_type pangea_data \
--model_type "mplug3" \
--prompt_type "task_instruction_nomem" \
--attr_constraint "cut" \
--expt_dir "logs" \
--few_shot_num 3
- Eval Multi-step Association with:
python eval_multistep.py \
--data_root Data \
--data_type ocl_attr_data \
--model_type "llava-onevision" \
--prompt_type "task_instruction" \
--attr_constraint "furry,metal" \
--expt_dir "logs" \
--few_shot_num 3
We reconstructed two association datasets based on adjective and verb concepts, for details on how to download the dataset and the structure please refer to Data.
@article{li2024labyrinth,
title={The Labyrinth of Links: Navigating the Associative Maze of Multi-modal LLMs},
author={Li, Hong and Li, Nanxi and Chen, Yuanjie and Zhu, Jianbin and Guo, Qinlu and Lu, Cewu and Li, Yong-Lu},
journal={arXiv preprint arXiv:2410.01417},
year={2024}
}
We extend our gratitude to the prior outstanding work in object concept learning, particularly OCL and Pangea, which serve as the foundation for our research.