The hdflex
package implements the
“Signal-Transformed-Subset-Combination” (STSC) forecasting algorithm
developed by Adämmer, Lehmann, and Schüssler
(2025). Please cite the
paper when using this package.
The package provides three core functions:
stsc()
: Directly applies the complete STSC forecasting algorithm described in Adämmer, Lehmann, and Schüssler (2025).tvc()
: Transforms predictive signals into univariate density forecasts using time-varying coefficient (TVC) models. Each model generates a conditionally Gaussian predictive density for each signal at each point in time. This function performs the first part of the STSC algorithm.dsc()
: Dynamically selects a subset of candidate forecast models for each period based on their past density forecast accuracy. This function performs the second part of the STSC algorithm.
Install the released version of hdflex
from CRAN:
install.packages("hdflex")
Alternatively, install the development version from GitHub:
# install.packages("devtools")
devtools::install_github("https://github.com/lehmasve/hdflex")
Compiler Requirements: The package involves C++ source code compilation during installation. Ensure you have the necessary compilers:
- Windows: Rtools (available from CRAN).
- macOS: Xcode Command Line Tools and a Fortran compiler. For detailed setup, refer to the R for macOS Developer Page.
The following examples demonstrate how to forecast quarterly U.S. inflation. For further details on the data and external forecasts, please see Koop & Korobilis (2023).
This example shows how to apply the STSC algorithm directly using the
stsc()
function.
#########################################################
######### Forecasting quarterly U.S. inflation ##########
#### Please see Koop & Korobilis (2023) for further ####
#### details regarding the data & external forecasts ####
#########################################################
# Load Package
library("hdflex")
library("ggplot2")
library("cowplot")
########## Get Data ##########
# Load Package Data
inflation_data <- inflation_data
# Set Target Variable
y <- inflation_data[, 1]
# Set 'P-Signals'
X <- inflation_data[, 2:442]
# Set 'F-Signals'
Ext_F <- inflation_data[, 443:462]
# Get Dates and Number of Observations
tdates <- rownames(inflation_data)
tlength <- length(tdates)
# First complete observation (no missing values)
first_complete <- which(complete.cases(inflation_data))[1]
########## Rolling AR2-Benchmark ##########
# Set up matrix for predictions
benchmark <- matrix(NA, nrow = tlength,
ncol = 1, dimnames = list(tdates, "AR2"))
# Set Window-Size (15 years of quarterly data)
window_size <- 15 * 4
# Time Sequence
t_seq <- seq(window_size, tlength - 1)
# Loop with rolling window
for (t in t_seq) {
# Split Data for Training Train Data
x_train <- cbind(int = 1, X[(t - window_size + 1):t, 1:2])
y_train <- y[(t - window_size + 1):t]
# Split Data for Prediction
x_pred <- cbind(int = 1, X[t + 1, 1:2, drop = FALSE])
# Fit AR-Model
model_ar <- .lm.fit(x_train, y_train)
# Predict and store in benchmark matrix
benchmark[t + 1, ] <- x_pred %*% model_ar$coefficients
}
########## STSC ##########
# Set TV-C-Parameter
init <- 5 * 4
lambda_grid <- c(0.90, 0.95, 1.00)
kappa_grid <- c(0.94, 0.96, 0.98)
bias <- TRUE
# Set DSC-Parameter
gamma_grid <- c(0.40, 0.50, 0.60, 0.70, 0.80, 0.90,
0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.00)
n_tvc <- (ncol(X) + ncol(Ext_F)) * length(lambda_grid) * length(kappa_grid)
psi_grid <- c(1:100, sapply(1:4, function(i) floor(i * n_tvc / 4)))
delta <- 0.95
burn_in <- first_complete + init / 2
burn_in_dsc <- 1
metric <- 5
equal_weight <- TRUE
incl <- NULL
parallel <- FALSE
n_threads <- NULL
# Apply STSC-Function
results <- hdflex::stsc(y,
X,
Ext_F,
init,
lambda_grid,
kappa_grid,
bias,
gamma_grid,
psi_grid,
delta,
burn_in,
burn_in_dsc,
metric,
equal_weight,
incl,
parallel,
n_threads,
NULL)
########## Evaluation ##########
# Define Evaluation Period (OOS-Period)
eval_period <- which(tdates >= "1991-04-01" & tdates <= "2021-12-01")
# Apply Evaluation Summary for STSC
eval_results <- summary(obj = results, eval_period = eval_period)
# Calculate (Mean-)Squared-Errors for AR2-Benchmark
se_ar2 <- (y[eval_period] - benchmark[eval_period, 1])^2
mse_ar2 <- mean(se_ar2)
# Create Cumulative Squared Error Differences (CSSED) Plot
cssed <- cumsum(se_ar2 - eval_results$MSE[[2]])
plot_cssed <- ggplot(
data.frame(eval_period, cssed),
aes(x = eval_period, y = cssed)
) +
geom_line() +
ylim(-0.0008, 0.0008) +
ggtitle("Cumulative Squared Error Differences") +
xlab("Time Index") +
ylab("CSSED") +
geom_hline(yintercept = 0, linetype = "dashed", color = "darkgray") +
theme_minimal(base_size = 15) +
theme(
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_rect(colour = "black", fill = NA),
axis.ticks = element_line(colour = "black"),
plot.title = element_text(hjust = 0.5)
)
# Show Plots
options(repr.plot.width = 15, repr.plot.height = 15)
plots_list <- eval_results$Plots
plots_list <- c(list(plot_cssed), plots_list)
cowplot::plot_grid(plotlist = plots_list, ncol = 2, nrow = 3, align = "hv")
# Relative MSE
print(paste("Relative MSE:", round(eval_results$MSE[[1]] / mse_ar2, 4)))
This example demonstrates the two-step application of the STSC
algorithm, first using tvc()
to generate individual model forecasts
and then dsc()
to combine them.
#########################################################
######### Forecasting quarterly U.S. inflation ##########
#### Please see Koop & Korobilis (2023) for further ####
#### details regarding the data & external forecasts ####
#########################################################
# Load Package
library("hdflex")
library("ggplot2")
library("cowplot")
########## Get Data ##########
# Load Package Data
inflation_data <- inflation_data
# Set Target Variable
y <- inflation_data[, 1]
# Set 'P-Signals'
X <- inflation_data[, 2:442]
# Set 'F-Signals'
Ext_F <- inflation_data[, 443:462]
# Get Dates and Number of Observations
tdates <- rownames(inflation_data)
tlength <- length(tdates)
# First complete observation (no missing values)
first_complete <- which(complete.cases(inflation_data))[1]
########## Rolling AR2-Benchmark ##########
# Set up matrix for predictions
benchmark <- matrix(NA, nrow = tlength,
ncol = 1, dimnames = list(tdates, "AR2"))
# Set Window-Size (15 years of quarterly data)
window_size <- 15 * 4
# Time Sequence
t_seq <- seq(window_size, tlength - 1)
# Loop with rolling window
for (t in t_seq) {
# Split Data for Training Train Data
x_train <- cbind(int = 1, X[(t - window_size + 1):t, 1:2])
y_train <- y[(t - window_size + 1):t]
# Split Data for Prediction
x_pred <- cbind(int = 1, X[t + 1, 1:2, drop = FALSE])
# Fit AR-Model
model_ar <- .lm.fit(x_train, y_train)
# Predict and store in benchmark matrix
benchmark[t + 1, ] <- x_pred %*% model_ar$coefficients
}
########## STSC ##########
### Part 1: TVC-Function
# Set TV-C-Parameter
init <- 5 * 4
lambda_grid <- c(0.90, 0.95, 1.00)
kappa_grid <- c(0.94, 0.96, 0.98)
bias <- TRUE
# Apply TVC-Function
tvc_results <- hdflex::tvc(y,
X,
Ext_F,
init,
lambda_grid,
kappa_grid,
bias)
# Assign TVC-Results
forecast_tvc <- tvc_results$Forecasts$Point_Forecasts
variance_tvc <- tvc_results$Forecasts$Variance_Forecasts
# First complete forecast period (no missing values)
sub_period <- seq(which(complete.cases(forecast_tvc))[1], tlength)
### Part 2: DSC-Function
# Set DSC-Parameter
gamma_grid <- c(0.40, 0.50, 0.60, 0.70, 0.80, 0.90,
0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.00)
psi_grid <- c(1:100, sapply(1:4, function(i) floor(i * ncol(forecast_tvc) / 4)))
delta <- 0.95
burn_in <- (init / 2) + 1
burn_in_dsc <- 1
metric <- 5
equal_weight <- TRUE
incl <- NULL
# Apply DSC-Function
dsc_results <- hdflex::dsc(y[sub_period],
forecast_tvc[sub_period, , drop = FALSE],
variance_tvc[sub_period, , drop = FALSE],
gamma_grid,
psi_grid,
delta,
burn_in,
burn_in_dsc,
metric,
equal_weight,
incl,
NULL)
# Assign DSC-Results
pred_stsc <- dsc_results$Forecasts$Point_Forecasts
var_stsc <- dsc_results$Forecasts$Variance_Forecasts
########## Evaluation ##########
# Define Evaluation Period (OOS-Period)
eval_period <- which(tdates[sub_period] >= "1991-04-01" & tdates[sub_period] <= "2021-12-01")
# Get Evaluation Summary for STSC
eval_results <- summary(obj = dsc_results, eval_period = eval_period)
# Calculate (Mean-)Squared-Errors for AR2-Benchmark
oos_y <- y[sub_period][eval_period]
oos_benchmark <- benchmark[sub_period[eval_period], , drop = FALSE]
se_ar2 <- (oos_y - oos_benchmark)^2
mse_ar2 <- mean(se_ar2)
# Create Cumulative Squared Error Differences (CSSED) Plot
cssed <- cumsum(se_ar2 - eval_results$MSE[[2]])
plot_cssed <- ggplot(
data.frame(eval_period, cssed),
aes(x = eval_period, y = cssed)
) +
geom_line() +
ylim(-0.0008, 0.0008) +
ggtitle("Cumulative Squared Error Differences") +
xlab("Time Index") +
ylab("CSSED") +
geom_hline(yintercept = 0, linetype = "dashed", color = "darkgray") +
theme_minimal(base_size = 15) +
theme(
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_rect(colour = "black", fill = NA),
axis.ticks = element_line(colour = "black"),
plot.title = element_text(hjust = 0.5)
)
# Show Plots
options(repr.plot.width = 15, repr.plot.height = 15)
plots_list <- eval_results$Plots
plots_list <- c(list(plot_cssed), plots_list)
cowplot::plot_grid(plotlist = plots_list, ncol = 2, nrow = 3, align = "hv")
# Relative MSE
print(paste("Relative MSE:", round(eval_results$MSE[[1]] / mse_ar2, 4)))
This section illustrates how to utilize the hdflex
R package within a
Python environment using the rpy2
library. rpy2
acts as an interface
to R, enabling you to execute R functions and manipulate R objects
directly from Python. The example replicates the U.S. inflation
forecasting task shown previously.
Prerequisites:
Ensure the following are installed to run this example:
- Python: Version 3.9 or newer.
- R: The R version used for installing the
hdflex
package. - Python Packages:
rpy2
,pandas
, andmatplotlib
. Install them via pip:bash pip install rpy2 pandas matplotlib
- R Packages:
hdflex
,ggplot2
, andcowplot
. Install them in your R environment:R install.packages(c("hdflex", "ggplot2", "cowplot"))
### Imports
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from numpy.linalg import lstsq
from rpy2 import robjects
from rpy2.robjects import pandas2ri, numpy2ri
from rpy2.robjects.packages import importr
from rpy2.robjects.conversion import localconverter
from rpy2.robjects.lib import grdevices
from IPython.display import display, Image
# Import R packages
hdflex = importr("hdflex")
ggplot2 = importr("ggplot2")
cowplot = importr("cowplot")
base = importr("base")
#########################################################
######### Forecasting quarterly U.S. inflation ##########
#### Please see Koop & Korobilis (2023) for further ####
#### details regarding the data & external forecasts ####
#########################################################
########## Get Data ##########
# Load Package Data
inflation_r = robjects.r["inflation_data"]
with localconverter(robjects.default_converter + pandas2ri.converter):
tmp = robjects.conversion.rpy2py(inflation_r)
row_names = list(robjects.r["rownames"](inflation_r))
col_names = list(robjects.r["colnames"](inflation_r))
inflation_df = pd.DataFrame(tmp, index=row_names, columns=col_names)
inflation_df.index = pd.to_datetime(inflation_df.index)
# Set Target Variable, P-Signals and F-Signals
y = inflation_df.iloc[:, 0].to_numpy()
X = inflation_df.iloc[:, 1:443].to_numpy()
Ext_F = inflation_df.iloc[:, 443:463].to_numpy()
# Dates, Observations and First Complete Row
tlength = len(inflation_df)
tdates = inflation_df.index
first_complete = np.where(~inflation_df.isna().any(axis=1))[0][0]
########## Rolling AR2-Benchmark ##########
# Set up matrix for predictions
benchmark = np.full(tlength, np.nan)
# Set Window Size (15 years, quarterly data)
window_size = 15 * 4
# Time Sequence
for t in range(window_size - 1, tlength - 1):
x_train = np.column_stack((
np.ones(window_size),
X[t - window_size + 1 : t + 1, :2]
))
y_train = y[t - window_size + 1 : t + 1]
# OLS coefficients
beta, *_ = lstsq(x_train, y_train, rcond=None)
# 1-step-ahead prediction
x_pred = np.concatenate(([1.0], X[t + 1, :2]))
benchmark[t + 1] = x_pred @ beta
########## STSC ##########
# Convert Python numpy arrays to R objects for hdflex
with localconverter(robjects.default_converter + numpy2ri.converter):
y_r = robjects.conversion.py2rpy(y)
X_r = robjects.conversion.py2rpy(X)
Ext_F_r = robjects.conversion.py2rpy(Ext_F)
# Set TV-C-Parameter
init = 5 * 4
lambda_grid = robjects.FloatVector([0.90, 0.95, 1.00])
kappa_grid = robjects.FloatVector([0.94, 0.96, 0.98])
bias = True
# Set DSC-Parameter
gamma_grid = robjects.FloatVector(
[0.40, 0.50, 0.60, 0.70, 0.80, 0.90,
0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.00]
)
n_tvc = (X.shape[1] + Ext_F.shape[1]) * len(lambda_grid) * len(kappa_grid)
psi_vec = list(range(1, 101)) + [int(i * n_tvc / 4) for i in range(1, 5)]
psi_grid = robjects.IntVector(psi_vec)
delta = 0.95
burn_in = int(first_complete + init / 2)
burn_in_dsc = 1
metric = 5
equal_weight = True
incl = robjects.NULL
parallel = False
n_threads = robjects.NULL
# Apply STSC-Function
results = hdflex.stsc(
y_r, X_r, Ext_F_r,
init,
lambda_grid, kappa_grid, bias,
gamma_grid, psi_grid, delta,
burn_in, burn_in_dsc,
metric, equal_weight,
incl, parallel, n_threads, robjects.NULL
)
########## Evaluation ##########
# Define Evaluation Period (OOS-Period)
eval_idx = np.where(
(tdates >= "1991-04-01") & (tdates <= "2021-12-01")
)[0]
# Apply Evaluation Summary for STSC
summary = robjects.r["summary"]
eval_res = summary(results, eval_period = robjects.IntVector(eval_idx + 1))
with localconverter(robjects.default_converter + pandas2ri.converter):
mse_vec = robjects.conversion.rpy2py(eval_res.rx2("MSE"))
mse_stsc = mse_vec[0].item()
# Calculate MSE for AR2-Benchmark
se_ar2 = (y[eval_idx] - benchmark[eval_idx])**2
mse_ar2 = np.nanmean(se_ar2)
# Print MSE values
print(f"Relative MSE (STSC / AR2 benchmark): {mse_stsc / mse_ar2:.3f}")
# Create Cumulative Squared Error Differences (CSSED) Plot
cssed = np.cumsum(se_ar2 - np.asarray(mse_vec[1], dtype=float))
plt.figure(figsize=(10, 6))
plt.plot(tdates[eval_idx], cssed, color="black")
plt.ylim(-0.0008, 0.0008)
plt.title("Cumulative Squared-Error Differences (AR2 – STSC)")
plt.ylabel("CSSED")
plt.xlabel("Time Index", fontsize=12)
plt.axhline(0, linestyle="--", lw=1)
plt.grid(False)
plt.tight_layout()
plt.show()
# Retrieve ggplot objects from R
plots = eval_res.rx2("Plots")
for p in plots:
with grdevices.render_to_bytesio(
grdevices.png, width=6, height=4, units="in", res=150) as img:
ggplot2.print_ggplot(p)
display(Image(img.getvalue()))
Philipp Adämmer, Sven Lehmann and Rainer Schüssler.
GPL (>= 2)