Skip to content

An Open-Standard, Adaptive TinyML Framework for Unsupervised Condition Monitoring and Human-in-the-Loop Learning on Edge Devices

License

Notifications You must be signed in to change notification settings

leekaize/tinyol-hitl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TinyOL-HITL

Incremental learning framework for edge devices with human-in-the-loop adaptation.

License Platform

Overview

Applied on edge devices, TinyOL-HITL enables on-device incremental learning with human feedback. No cloud dependency. Streaming algorithms. Industrial integration.

Key Features:

  • Streaming k-means clustering (<100KB model footprint)
  • Human-in-the-loop corrections via MQTT
  • Flash-based model persistence
  • Industrial protocols (supOS-CE, Ignition)
  • 1-year battery life target

Baseline: Improves on TinyOL (2021) with streaming updates and HITL integration.

Quick Start

See QUICKSTART.md for hardware setup and first run.

Documentation:

Architecture

Sensor → Features → Clustering → WiFi → supOS-CE → Ignition
                         ↑                              ↓
                         └──────── Human Labels ────────┘

Hardware

Reference: Raspberry Pi Pico 2 W (RP2350B)
Target: 1-year battery life, <100KB RAM
Extensible: Any Cortex-M33 platform

Components

  • core/clustering/ - Streaming algorithms
  • core/persistence/ - Model state management
  • platforms/rp2350/ - Pico SDK wrapper
  • integrations/ - supOS-CE and Ignition connectors

Use Cases

Condition Monitoring:

  • Vibration anomaly detection
  • Acoustic pattern recognition
  • Temperature trend analysis

Adaptive Systems:

  • User behavior learning
  • Environmental adaptation
  • Predictive maintenance

Project Status: Day 2 Complete

Day 1: Toolchain validated ✓
Day 2: Core k-means + RP2350 integration ✓
Day 3: supOS-CE integration (next)

Day 2 Metrics:

  • Memory: 4.2 KB model footprint
  • Convergence: 150 points, ±0.05 error
  • Throughput: 150 points/sec @ 150MHz
  • Tests: 9/9 pass

Roadmap:

  • Toolchain validation
  • Core k-means implementation
  • RP2350 platform support
  • supOS-CE integration
  • Ignition visualization
  • Energy profiling

Contributing

See CONTRIBUTING.md for development setup.

We welcome:

  • Platform ports
  • Algorithm improvements
  • Integration modules
  • Documentation enhancements

License

Apache-2.0 - See LICENSE for details.

Citation

If you use this framework in research:

@misc{tinyol-hitl,
  author = {Lee Kai Ze},
  title = {TinyOL-HITL: Incremental Learning Framework for Edge Devices with Human-in-the-Loop},
  year = {2025},
  publisher = {GitHub},
  url = {https://github.com/leekaize/tinyol-hitl}
}

References

Baseline: TinyOL (2021) - On-device learning with 256KB model, batch processing.

Our improvements: Streaming updates, <100KB memory, HITL integration, industrial protocols.

Contact

  • Issues: Bug reports and feature requests
  • Discussions: Architecture questions and use cases
  • Email: mail@leekaize.com (research collaboration)

Built for: Embedded researchers, industrial IoT developers, edge ML practitioners

About

An Open-Standard, Adaptive TinyML Framework for Unsupervised Condition Monitoring and Human-in-the-Loop Learning on Edge Devices

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published