-
Notifications
You must be signed in to change notification settings - Fork 839
[Merged by Bors] - feat(Geometry/Euclidean/Angle/Oriented): oriented/unoriented equality and bisection lemmas #30476
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Merged by Bors] - feat(Geometry/Euclidean/Angle/Oriented): oriented/unoriented equality and bisection lemmas #30476
Conversation
… and bisection lemmas Add lemmas ```lean lemma oangle_eq_neg_of_angle_eq_of_sign_eq_neg {w x y z : V} (h : InnerProductGeometry.angle w x = InnerProductGeometry.angle y z) (hs : (o.oangle w x).sign = -(o.oangle y z).sign) : o.oangle w x = -o.oangle y z := by ``` and ```lean lemma angle_eq_iff_oangle_eq_neg_of_sign_eq_neg {w x y z : V} (hw : w ≠ 0) (hx : x ≠ 0) (hy : y ≠ 0) (hz : z ≠ 0) (hs : (o.oangle w x).sign = -(o.oangle y z).sign) : InnerProductGeometry.angle w x = InnerProductGeometry.angle y z ↔ o.oangle w x = -o.oangle y z := by ``` and similar affine versions, corresponding to such lemmas that already exist when the signs are equal rather than negations of each other. Deduce lemmas relating oriented and unoriented versions of angle bisection: ```lean lemma angle_eq_iff_oangle_eq_or_sameRay {x y z : V} (hx : x ≠ 0) (hz : z ≠ 0) : InnerProductGeometry.angle x y = InnerProductGeometry.angle y z ↔ o.oangle x y = o.oangle y z ∨ SameRay ℝ x z := by ``` and ```lean lemma angle_eq_iff_oangle_eq_or_wbtw {p₁ p₂ p₃ p₄ : P} (hp₁ : p₁ ≠ p₂) (hp₄ : p₄ ≠ p₂) : ∠ p₁ p₂ p₃ = ∠ p₃ p₂ p₄ ↔ ∡ p₁ p₂ p₃ = ∡ p₃ p₂ p₄ ∨ Wbtw ℝ p₂ p₁ p₄ ∨ Wbtw ℝ p₂ p₄ p₁ := by ```
PR summary b7404f616cImport changes for modified filesNo significant changes to the import graph Import changes for all files
|
Could you change the order of the lemmas (in both files) so that |
Co-authored-by: Jovan Gerbscheid <56355248+JovanGerb@users.noreply.github.com>
Order changed as requested. |
Thanks, LGTM 🎉 maintainer merge |
🚀 Pull request has been placed on the maintainer queue by JovanGerb. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks 🎉
bors merge
… and bisection lemmas (#30476) Add lemmas ```lean lemma oangle_eq_neg_of_angle_eq_of_sign_eq_neg {w x y z : V} (h : InnerProductGeometry.angle w x = InnerProductGeometry.angle y z) (hs : (o.oangle w x).sign = -(o.oangle y z).sign) : o.oangle w x = -o.oangle y z := by ``` and ```lean lemma angle_eq_iff_oangle_eq_neg_of_sign_eq_neg {w x y z : V} (hw : w ≠ 0) (hx : x ≠ 0) (hy : y ≠ 0) (hz : z ≠ 0) (hs : (o.oangle w x).sign = -(o.oangle y z).sign) : InnerProductGeometry.angle w x = InnerProductGeometry.angle y z ↔ o.oangle w x = -o.oangle y z := by ``` and similar affine versions, corresponding to such lemmas that already exist when the signs are equal rather than negations of each other. Deduce lemmas relating oriented and unoriented versions of angle bisection: ```lean lemma angle_eq_iff_oangle_eq_or_sameRay {x y z : V} (hx : x ≠ 0) (hz : z ≠ 0) : InnerProductGeometry.angle x y = InnerProductGeometry.angle y z ↔ o.oangle x y = o.oangle y z ∨ SameRay ℝ x z := by ``` and ```lean lemma angle_eq_iff_oangle_eq_or_wbtw {p₁ p₂ p₃ p₄ : P} (hp₁ : p₁ ≠ p₂) (hp₄ : p₄ ≠ p₂) : ∠ p₁ p₂ p₃ = ∠ p₃ p₂ p₄ ↔ ∡ p₁ p₂ p₃ = ∡ p₃ p₂ p₄ ∨ Wbtw ℝ p₂ p₁ p₄ ∨ Wbtw ℝ p₂ p₄ p₁ := by ```
Pull request successfully merged into master. Build succeeded: |
Add lemmas
and
and similar affine versions, corresponding to such lemmas that already exist when the signs are equal rather than negations of each other. Deduce lemmas relating oriented and unoriented versions of angle bisection:
and