@@ -46,11 +46,11 @@ local notation "βͺ" x ", " y "β«" => @inner π _ _ x y
46
46
47
47
local postfix :90 "β " => starRingEnd _
48
48
49
- export InnerProductSpace (norm_sq_eq_inner )
49
+ export InnerProductSpace (norm_sq_eq_re_inner )
50
50
51
51
@[simp]
52
52
theorem inner_conj_symm (x y : E) : βͺy, xβ«β = βͺx, yβ« :=
53
- InnerProductSpace.conj_symm _ _
53
+ InnerProductSpace.conj_inner_symm _ _
54
54
55
55
theorem real_inner_comm (x y : F) : βͺy, xβ«_β = βͺx, yβ«_β :=
56
56
@inner_conj_symm β _ _ _ _ x y
@@ -176,7 +176,7 @@ theorem inner_re_zero_right (x : E) : re βͺx, 0β« = 0 := by
176
176
simp only [inner_zero_right, AddMonoidHom.map_zero]
177
177
178
178
theorem inner_self_nonneg {x : E} : 0 β€ re βͺx, xβ« :=
179
- PreInnerProductSpace.toCore.nonneg_re x
179
+ PreInnerProductSpace.toCore.re_inner_nonneg x
180
180
181
181
theorem real_inner_self_nonneg {x : F} : 0 β€ βͺx, xβ«_β :=
182
182
@inner_self_nonneg β F _ _ _ x
@@ -186,7 +186,7 @@ theorem inner_self_ofReal_re (x : E) : (re βͺx, xβ« : π) = βͺx, xβ« :=
186
186
((RCLike.is_real_TFAE (βͺx, xβ« : π)).out 2 3 ).2 (inner_self_im (π := π) x)
187
187
188
188
theorem inner_self_eq_norm_sq_to_K (x : E) : βͺx, xβ« = (βxβ : π) ^ 2 := by
189
- rw [β inner_self_ofReal_re, β norm_sq_eq_inner , ofReal_pow]
189
+ rw [β inner_self_ofReal_re, β norm_sq_eq_re_inner , ofReal_pow]
190
190
191
191
theorem inner_self_re_eq_norm (x : E) : re βͺx, xβ« = ββͺx, xβ«β := by
192
192
conv_rhs => rw [β inner_self_ofReal_re]
@@ -274,7 +274,7 @@ variable [NormedAddCommGroup F] [InnerProductSpace β F]
274
274
275
275
local notation "βͺ" x ", " y "β«" => @inner π _ _ x y
276
276
277
- export InnerProductSpace (norm_sq_eq_inner )
277
+ export InnerProductSpace (norm_sq_eq_re_inner )
278
278
279
279
@[simp]
280
280
theorem inner_self_eq_zero {x : E} : βͺx, xβ« = 0 β x = 0 := by
@@ -294,18 +294,21 @@ theorem ext_inner_right {x y : E} (h : β v, βͺx, vβ« = βͺy, vβ«) : x = y :
294
294
variable {π}
295
295
296
296
@[simp]
297
- theorem inner_self_nonpos {x : E} : re βͺx, xβ« β€ 0 β x = 0 := by
298
- rw [β norm_sq_eq_inner , (sq_nonneg _).le_iff_eq, sq_eq_zero_iff, norm_eq_zero]
297
+ theorem re_inner_self_nonpos {x : E} : re βͺx, xβ« β€ 0 β x = 0 := by
298
+ rw [β norm_sq_eq_re_inner , (sq_nonneg _).le_iff_eq, sq_eq_zero_iff, norm_eq_zero]
299
299
300
300
@[simp]
301
- theorem inner_self_pos {x : E} : 0 < re βͺx, xβ« β x β 0 := by
302
- simpa [-inner_self_nonpos] using inner_self_nonpos (π := π) (x := x).not
301
+ lemma re_inner_self_pos {x : E} : 0 < re βͺx, xβ« β x β 0 := by
302
+ simpa [-re_inner_self_nonpos] using re_inner_self_nonpos (π := π) (x := x).not
303
+
304
+ @[deprecated (since := "2025-04-22")] alias inner_self_nonpos := re_inner_self_nonpos
305
+ @[deprecated (since := "2025-04-22")] alias inner_self_pos := re_inner_self_pos
303
306
304
307
open scoped InnerProductSpace in
305
- theorem real_inner_self_nonpos {x : F} : βͺx, xβ«_β β€ 0 β x = 0 := inner_self_nonpos (π := β)
308
+ theorem real_inner_self_nonpos {x : F} : βͺx, xβ«_β β€ 0 β x = 0 := re_inner_self_nonpos (π := β)
306
309
307
310
open scoped InnerProductSpace in
308
- theorem real_inner_self_pos {x : F} : 0 < βͺx, xβ«_β β x β 0 := inner_self_pos (π := β)
311
+ theorem real_inner_self_pos {x : F} : 0 < βͺx, xβ«_β β x β 0 := re_inner_self_pos (π := β)
309
312
310
313
/-- A family of vectors is linearly independent if they are nonzero
311
314
and orthogonal. -/
@@ -336,16 +339,18 @@ local notation "βͺ" x ", " y "β«" => @inner π _ _ x y
336
339
337
340
local notation "IK" => @RCLike.I π _
338
341
339
- theorem norm_eq_sqrt_inner (x : E) : βxβ = β(re βͺx, xβ«) :=
342
+ theorem norm_eq_sqrt_re_inner (x : E) : βxβ = β(re βͺx, xβ«) :=
340
343
calc
341
344
βxβ = β(βxβ ^ 2 ) := (sqrt_sq (norm_nonneg _)).symm
342
- _ = β(re βͺx, xβ«) := congr_arg _ (norm_sq_eq_inner _)
345
+ _ = β(re βͺx, xβ«) := congr_arg _ (norm_sq_eq_re_inner _)
346
+
347
+ @[deprecated (since := "2025-04-22")] alias norm_eq_sqrt_inner := norm_eq_sqrt_re_inner
343
348
344
349
theorem norm_eq_sqrt_real_inner (x : F) : βxβ = ββͺx, xβ«_β :=
345
- @norm_eq_sqrt_inner β _ _ _ _ x
350
+ @norm_eq_sqrt_re_inner β _ _ _ _ x
346
351
347
352
theorem inner_self_eq_norm_mul_norm (x : E) : re βͺx, xβ« = βxβ * βxβ := by
348
- rw [@norm_eq_sqrt_inner π, β sqrt_mul inner_self_nonneg (re βͺx, xβ«),
353
+ rw [@norm_eq_sqrt_re_inner π, β sqrt_mul inner_self_nonneg (re βͺx, xβ«),
349
354
sqrt_mul_self inner_self_nonneg]
350
355
351
356
theorem inner_self_eq_norm_sq (x : E) : re βͺx, xβ« = βxβ ^ 2 := by
@@ -413,7 +418,7 @@ theorem norm_sub_mul_self_real (x y : F) :
413
418
414
419
/-- CauchyβSchwarz inequality with norm -/
415
420
theorem norm_inner_le_norm (x y : E) : ββͺx, yβ«β β€ βxβ * βyβ := by
416
- rw [norm_eq_sqrt_inner (π := π) x, norm_eq_sqrt_inner (π := π) y]
421
+ rw [norm_eq_sqrt_re_inner (π := π) x, norm_eq_sqrt_re_inner (π := π) y]
417
422
letI : PreInnerProductSpace.Core π E := PreInnerProductSpace.toCore
418
423
exact InnerProductSpace.Core.norm_inner_le_norm x y
419
424
@@ -666,7 +671,7 @@ theorem norm_inner_eq_norm_tfae (x y : E) :
666
671
have : βxβ ^ 2 β 0 := pow_ne_zero _ (norm_ne_zero_iff.2 hxβ)
667
672
rw [β sq_eq_sqβ, mul_pow, β mul_right_inj' this, eq_comm, β sub_eq_zero, β mul_sub] at h <;>
668
673
try positivity
669
- simp only [@norm_sq_eq_inner π] at h
674
+ simp only [@norm_sq_eq_re_inner π] at h
670
675
letI : InnerProductSpace.Core π E := InnerProductSpace.toCore
671
676
erw [β InnerProductSpace.Core.cauchy_schwarz_aux (π := π) (F := E)] at h
672
677
rw [InnerProductSpace.Core.normSq_eq_zero, sub_eq_zero] at h
@@ -789,10 +794,10 @@ theorem inner_lt_one_iff_real_of_norm_one {x y : F} (hx : βxβ = 1) (hy : β
789
794
/-- The sphere of radius `r = βyβ` is tangent to the plane `βͺx, yβ« = βyβ ^ 2` at `x = y`. -/
790
795
theorem eq_of_norm_le_re_inner_eq_norm_sq {x y : E} (hle : βxβ β€ βyβ) (h : re βͺx, yβ« = βyβ ^ 2 ) :
791
796
x = y := by
792
- suffices H : re βͺx - y, x - yβ« β€ 0 by rwa [inner_self_nonpos , sub_eq_zero] at H
797
+ suffices H : re βͺx - y, x - yβ« β€ 0 by rwa [re_inner_self_nonpos , sub_eq_zero] at H
793
798
have Hβ : βxβ ^ 2 β€ βyβ ^ 2 := by gcongr
794
799
have Hβ : re βͺy, xβ« = βyβ ^ 2 := by rwa [β inner_conj_symm, conj_re]
795
- simpa [inner_sub_left, inner_sub_right, β norm_sq_eq_inner , h, Hβ] using Hβ
800
+ simpa [inner_sub_left, inner_sub_right, β norm_sq_eq_re_inner , h, Hβ] using Hβ
796
801
797
802
end Norm
798
803
@@ -803,8 +808,8 @@ local notation "βͺ" x ", " y "β«" => @inner π _ _ x y
803
808
/-- A field `π` satisfying `RCLike` is itself a `π`-inner product space. -/
804
809
instance RCLike.innerProductSpace : InnerProductSpace π π where
805
810
inner x y := y * conj x
806
- norm_sq_eq_inner x := by simp only [inner, mul_conj, β ofReal_pow, ofReal_re]
807
- conj_symm x y := by simp only [mul_comm, map_mul, starRingEnd_self_apply]
811
+ norm_sq_eq_re_inner x := by simp only [inner, mul_conj, β ofReal_pow, ofReal_re]
812
+ conj_inner_symm x y := by simp only [mul_comm, map_mul, starRingEnd_self_apply]
808
813
add_left x y z := by simp only [mul_add, map_add]
809
814
smul_left x y z := by simp only [mul_comm (conj z), mul_assoc, smul_eq_mul, map_mul]
810
815
@@ -845,8 +850,8 @@ abbrev InnerProductSpace.rclikeToReal : InnerProductSpace β E :=
845
850
{ Inner.rclikeToReal π E,
846
851
NormedSpace.restrictScalars β π
847
852
E with
848
- norm_sq_eq_inner := norm_sq_eq_inner
849
- conj_symm := fun _ _ => inner_re_symm _ _
853
+ norm_sq_eq_re_inner := norm_sq_eq_re_inner
854
+ conj_inner_symm := fun _ _ => inner_re_symm _ _
850
855
add_left := fun x y z => by
851
856
change re βͺx + y, zβ« = re βͺx, zβ« + re βͺy, zβ«
852
857
simp only [inner_add_left, map_add]
@@ -882,8 +887,8 @@ end RCLikeToReal
882
887
/-- An `RCLike` field is a real inner product space. -/
883
888
noncomputable instance RCLike.toInnerProductSpaceReal : InnerProductSpace β π where
884
889
__ := Inner.rclikeToReal π π
885
- norm_sq_eq_inner := norm_sq_eq_inner
886
- conj_symm x y := inner_re_symm ..
890
+ norm_sq_eq_re_inner := norm_sq_eq_re_inner
891
+ conj_inner_symm x y := inner_re_symm ..
887
892
add_left x y z :=
888
893
show re (_ * _) = re (_ * _) + re (_ * _) by simp only [map_add, mul_re, conj_re, conj_im]; ring
889
894
smul_left x y r :=
0 commit comments