@@ -437,7 +437,7 @@ instance Pi.conditionallyCompleteLattice {ι : Type*} {α : ι → Type*}
437
437
438
438
section ConditionallyCompleteLinearOrder
439
439
440
- variable [ConditionallyCompleteLinearOrder α] {s : Set α} {a b : α}
440
+ variable [ConditionallyCompleteLinearOrder α] {f : ι → α} { s : Set α} {a b : α}
441
441
442
442
/-- When `b < sSup s`, there is an element `a` in `s` with `b < a`, if `s` is nonempty and the order
443
443
is a linear order. -/
@@ -456,20 +456,32 @@ theorem lt_csSup_iff (hb : BddAbove s) (hs : s.Nonempty) : a < sSup s ↔ ∃ b
456
456
theorem csInf_lt_iff (hb : BddBelow s) (hs : s.Nonempty) : sInf s < a ↔ ∃ b ∈ s, b < a :=
457
457
isGLB_lt_iff <| isGLB_csInf hs hb
458
458
459
- theorem csSup_of_not_bddAbove {s : Set α} (hs : ¬BddAbove s) : sSup s = sSup ∅ :=
459
+ @[simp] lemma csSup_of_not_bddAbove (hs : ¬BddAbove s) : sSup s = sSup ∅ :=
460
460
ConditionallyCompleteLinearOrder.csSup_of_not_bddAbove s hs
461
461
462
- theorem csSup_eq_univ_of_not_bddAbove {s : Set α} (hs : ¬BddAbove s) : sSup s = sSup univ := by
462
+ @[simp] lemma ciSup_of_not_bddAbove (hf : ¬BddAbove (range f)) : ⨆ i, f i = sSup ∅ :=
463
+ csSup_of_not_bddAbove hf
464
+
465
+ lemma csSup_eq_univ_of_not_bddAbove (hs : ¬BddAbove s) : sSup s = sSup univ := by
463
466
rw [csSup_of_not_bddAbove hs, csSup_of_not_bddAbove (s := univ)]
464
467
contrapose! hs
465
468
exact hs.mono (subset_univ _)
466
469
467
- theorem csInf_of_not_bddBelow {s : Set α} (hs : ¬BddBelow s) : sInf s = sInf ∅ :=
470
+ lemma ciSup_eq_univ_of_not_bddAbove (hf : ¬BddAbove (range f)) : ⨆ i, f i = sSup univ :=
471
+ csSup_eq_univ_of_not_bddAbove hf
472
+
473
+ @[simp] lemma csInf_of_not_bddBelow (hs : ¬BddBelow s) : sInf s = sInf ∅ :=
468
474
ConditionallyCompleteLinearOrder.csInf_of_not_bddBelow s hs
469
475
470
- theorem csInf_eq_univ_of_not_bddBelow {s : Set α} (hs : ¬BddBelow s) : sInf s = sInf univ :=
476
+ @[simp] lemma ciInf_of_not_bddBelow (hf : ¬BddBelow (range f)) : ⨅ i, f i = sInf ∅ :=
477
+ csInf_of_not_bddBelow hf
478
+
479
+ lemma csInf_eq_univ_of_not_bddBelow (hs : ¬BddBelow s) : sInf s = sInf univ :=
471
480
csSup_eq_univ_of_not_bddAbove (α := αᵒᵈ) hs
472
481
482
+ lemma ciInf_eq_univ_of_not_bddBelow (hf : ¬BddBelow (range f)) : ⨅ i, f i = sInf univ :=
483
+ csInf_eq_univ_of_not_bddBelow hf
484
+
473
485
/-- When every element of a set `s` is bounded by an element of a set `t`, and conversely, then
474
486
`s` and `t` have the same supremum. This holds even when the sets may be empty or unbounded. -/
475
487
theorem csSup_eq_csSup_of_forall_exists_le {s t : Set α}
0 commit comments