Skip to content

A unified data-ingestion CLI that auto-detects and converts text, image, audio and tabular sources into standardized training datasets with schema validation, sampling, and augmentation capabilities.

License

Notifications You must be signed in to change notification settings

leandrenash/unimodaly-ingest

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Unimodaly Ingest

A unified data-ingestion CLI that auto-detects and converts text, image, audio and tabular sources into standardized training datasets with schema validation, sampling, and augmentation capabilities.

Features

  • Multi-modal Data Detection: Automatically detects and processes text, image, audio, and tabular data formats
  • Schema Validation: Validates output datasets against custom or default schemas
  • Data Augmentation: Built-in augmentation techniques for each data type
  • Flexible Sampling: Control dataset size with sampling ratios
  • Multiple Output Formats: Export to JSON, JSONL, or CSV formats
  • Batch Processing: Efficient processing of large datasets
  • Configuration Management: Customizable processing pipelines
  • Comprehensive Metadata: Rich metadata and feature extraction for each data type

Installation

npm install -g unimodaly-ingest

Quick Start

# Process all data in a directory
unimodaly-ingest ingest ./data --output ./processed

# Process specific data types with augmentation
unimodaly-ingest ingest ./images --type image --augment --output ./processed

# Sample 50% of data and export to CSV
unimodaly-ingest ingest ./data --sample 0.5 --format csv

# Initialize configuration
unimodaly-ingest config --init

Supported Data Types

Text Files

  • .txt, .md, .json, .xml, .html
  • Encoding detection and validation
  • Language detection
  • Text augmentation (synonym replacement, random operations)

Image Files

  • .jpg, .jpeg, .png, .gif, .webp, .svg, .bmp, .tiff
  • Metadata extraction (dimensions, color space, etc.)
  • Feature extraction (intensity statistics, aspect ratio)
  • Image augmentation (rotation, brightness, contrast, flipping)

Audio Files

  • .mp3, .wav, .flac, .ogg, .m4a, .aac
  • Audio metadata extraction
  • Duration, sample rate, channel analysis
  • Audio augmentation capabilities

Tabular Data

  • .csv, .tsv, .xlsx, .json
  • Schema inference
  • Statistical analysis
  • Data type detection
  • Duplicate and null value analysis

Commands

ingest

Main command for processing data sources.

unimodaly-ingest ingest <input> [options]

Options:

  • -o, --output <path> - Output directory (default: ./output)
  • -f, --format <format> - Output format: json, jsonl, csv (default: json)
  • -s, --sample <ratio> - Sampling ratio 0-1 (default: 1.0)
  • -a, --augment - Enable data augmentation
  • --schema <path> - Custom schema validation file
  • --config <path> - Configuration file path
  • -v, --verbose - Verbose output
  • -t, --type <types...> - Specific data types: text, image, audio, tabular
  • --batch-size <size> - Batch processing size (default: 100)

config

Manage configuration settings.

unimodaly-ingest config [options]

Options:

  • --init - Initialize default configuration
  • --show - Show current configuration
  • --set <key=value> - Set configuration value

validate

Validate dataset against schema.

unimodaly-ingest validate <dataset> [options]

Options:

  • --schema <path> - Schema file path

Configuration

Initialize a configuration file to customize processing behavior:

unimodaly-ingest config --init

This creates unimodaly.config.json with settings for:

  • Data type specific processing options
  • Augmentation parameters
  • Output formats and compression
  • Performance settings
  • Schema validation rules

Example configuration:

{
  "text": {
    "encoding": "utf8",
    "maxSize": "10MB",
    "augmentation": {
      "enabled": false,
      "synonymReplacement": 0.1,
      "randomInsertion": 0.1
    }
  },
  "image": {
    "maxSize": "50MB",
    "augmentation": {
      "enabled": false,
      "rotation": 15,
      "brightness": 0.2,
      "flip": true
    }
  }
}

Output Format

The CLI generates standardized datasets with rich metadata:

[
  {
    "type": "text",
    "source": "/path/to/file.txt",
    "timestamp": "2025-01-27T10:30:00.000Z",
    "content": "processed content...",
    "metadata": {
      "originalLength": 1500,
      "fileSize": 1024,
      "lines": 25,
      "words": 200
    },
    "features": {
      "wordCount": 200,
      "sentenceCount": 12,
      "language": "en"
    }
  }
]

Schema Validation

Define custom schemas for validation:

{
  "type": "array",
  "items": {
    "type": "object",
    "required": ["type", "source", "content"],
    "properties": {
      "type": {
        "type": "string",
        "enum": ["text", "image", "audio", "tabular"]
      },
      "source": {
        "type": "string"
      },
      "content": {
        "type": ["string", "object"]
      }
    }
  }
}

Examples

Process Mixed Media Directory

unimodaly-ingest ingest ./media_folder \
  --output ./datasets \
  --format json \
  --augment \
  --sample 0.8 \
  --verbose

Text-Only Processing with Custom Schema

unimodaly-ingest ingest ./documents \
  --type text \
  --schema ./text_schema.json \
  --output ./text_dataset \
  --format jsonl

Image Dataset with Augmentation

unimodaly-ingest ingest ./images \
  --type image \
  --augment \
  --batch-size 50 \
  --output ./image_dataset

License

MIT

About

A unified data-ingestion CLI that auto-detects and converts text, image, audio and tabular sources into standardized training datasets with schema validation, sampling, and augmentation capabilities.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published