Long-tailed multi-label classification with noisy
label of thoracic diseases from chest X-ray.
Please download extra files from Google Drive: (We will public in future for secrecy) or in BaiduYun: 链接:https://pan.baidu.com/s/1wbCZwOpR7kvL9LN1b4A8xQ?pwd=2023 提取码:2023.
Please download MIMIC-CXR dataset from https://physionet.org/content/mimic-cxr/2.0.0/.
The information of LTML-MIMIC-CXR is saved in ./data/mimicall/LTML_MIMIC_CXR_label_.csv
. The path of jpg images has been listed in LTML_MIMIC_CXR_label_.csv
, which can be saved in ./data/mimicall/mimic
.
The ./appendix
contain the split of LTML-MIMIC-CXR in this repo.
appendix
|--mimic
|--class_freq.pkl
|--class_split.pkl
|--class_name.pkl
|--img_id.pkl
|--val.txt
|--val.pkl
|--test.txt
|--test.pkl
CUDA_VISIBLE_DEVICES=0 python tools/train.py --config ./configs/mimic/LTML_resnet50_ANR_LLA.py
CUDA_VISIBLE_DEVICES=0 python tools/train.py --config ./configs/mimic/LTML_resnet50_ANR_LLM.py
CUDA_VISIBLE_DEVICES=0 python tools/test.py --config './work_dirs/LTML_MIMIC_CXR_resnet50_ANR_LLA/LTML_resnet50_ANR_LLA.py' --checkpoint './work_dirs/LTML_MIMIC_CXR_resnet50_ANR_LLA/latest.pth'
CUDA_VISIBLE_DEVICES=0 python tools/test.py --config './work_dirs/LTML_MIMIC_CXR_resnet50_ANR_LLA/LTML_resnet50_ANR_LLM.py' --checkpoint './work_dirs/LTML_MIMIC_CXR_resnet50_ANR_LLM/latest.pth'
The trained models is saved in ./work_dirs
, which can be used to inference directly.