Skip to content

GitHub Repository associated with the piQTL project (Mapping effects of genome-wide genetic variation to protein-protein interactions reveals molecular mechanisms of complex traits) [ Serohijos & Michnick Lab, Université de Montréal ]

License

Notifications You must be signed in to change notification settings

ladyson1806/SerohijosLab-piQTL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Genetic landscape of an in vivo protein interactome

Université de Montréal (2021-2025)

  • Savandara Besse #, Tatsuya Sakaguchi #, Louis Gauthier, Zahra Sahaf, Olivier Péloquin, Lidice Gonzalez, Xavier Castellanos-Girouard, Nazli Koçatug, Chloé Matta, Julie Hussin, Stephen Michnick*, Adrian Serohijos*
    • Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada (SB, TS, LoG, ZS, OP, LiG, XCG, NK, CM, SWM, AS)
    • Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, Montréal, Québec, Canada (SB, TS, LoG, ZS, OP, LiG, XCG, NK, CM, SM, AS)
    • Institut de Cardiologie de Montréal, Montréal, Québec, Canada (JH)
    • Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada (JH)

# These authors contributed equally.

piQTL website

https://ladyson1806.github.io/SerohijosLab-piQTL/

1. Contact

* Correspondence

  • Adrian Serohijos (@aserohijos) : adrian.serohijos @ umontreal.ca
  • Stephen Michnick (@michnics) : stephen.michnick @ umontreal.ca

Website and Code maintenance

  • Savandara Besse (@ladyson1806) : savandara.besse @ cnrs.fr

2. Software and libraries

Python

R

  • R (ToDo: Specify the R version in this study)
  • Required R packages: (ToDo: please specify as needed)

3. Installation Guide

Python

  1. Clone the repository:

    git clone https://github.com/ladyson1806/SerohijosLab-piQTL.git
    cd SerohijosLab-piQTL

    Note: The repository size is approximately 15 GB. Depending on your internet speed and disk performance, cloning may take 10–30 minutes or longer.

  2. (Recommended) Create a virtual environment:

    python3 -m venv venv
    source venv/bin/activate
  3. Install Python dependencies:

    pip install -r requirements.txt

R

  1. Install R (version 4.2 or higher recommended).

  2. Install required R packages:

    install.packages(c("tidyverse", "data.table", ...)) # Add all required packages here

4. Instructions for Use

The sequence data generated in this study are available in the Gene Expression Omnibus (GEO) under accession ID GSE246414. All Python scripts, R scripts, and Jupyter notebooks used for data analysis are provided and are fully executable. The outputs from both the analysis scripts and notebooks, including all figures, are saved in the data/ and figure/ directories. To reproduce these results, execute the scripts and notebooks as described belolw.

Running Python Scripts

To run a Python analysis script:

python target_script.py

Replace target_script.py with the name of the script you wish to execute.

Running R Scripts

To run an R script:

Rscript target_script.R

Replace target_script.R with the name of the script you wish to execute.

Running Jupyter notebooks

To run a Jupyter notebook:

  1. Start the Jupyter Notebook server:
    jupyter notebook
  2. In your web browser, navigate to the provided local URL (usually http://localhost:8888).
  3. Open the desired .ipynb notebook file and run the cells as needed.

About

GitHub Repository associated with the piQTL project (Mapping effects of genome-wide genetic variation to protein-protein interactions reveals molecular mechanisms of complex traits) [ Serohijos & Michnick Lab, Université de Montréal ]

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •  

Languages