- Savandara Besse #, Tatsuya Sakaguchi #, Louis Gauthier, Zahra Sahaf, Olivier Péloquin, Lidice Gonzalez, Xavier Castellanos-Girouard, Nazli Koçatug, Chloé Matta, Julie Hussin, Stephen Michnick*, Adrian Serohijos*
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada (SB, TS, LoG, ZS, OP, LiG, XCG, NK, CM, SWM, AS)
- Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, Montréal, Québec, Canada (SB, TS, LoG, ZS, OP, LiG, XCG, NK, CM, SM, AS)
- Institut de Cardiologie de Montréal, Montréal, Québec, Canada (JH)
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada (JH)
# These authors contributed equally.
- Adrian Serohijos (@aserohijos) : adrian.serohijos @ umontreal.ca
- Stephen Michnick (@michnics) : stephen.michnick @ umontreal.ca
- Savandara Besse (@ladyson1806) : savandara.besse @ cnrs.fr
- Python 3.11.4
- matplotlib 3.7.2
- matplotlib-venn 0.11.9
- mpl-scatter-density 0.7
- numpy 1.25.2
- pandas 2.0.3
- plotnine 0.12.2
- scipy 1.11.1
- seaborn 0.12.2
- tqdm 4.66.1
- venn 0.1.3
- R (ToDo: Specify the R version in this study)
- Required R packages: (ToDo: please specify as needed)
-
Clone the repository:
git clone https://github.com/ladyson1806/SerohijosLab-piQTL.git cd SerohijosLab-piQTL
Note: The repository size is approximately 15 GB. Depending on your internet speed and disk performance, cloning may take 10–30 minutes or longer.
-
(Recommended) Create a virtual environment:
python3 -m venv venv source venv/bin/activate
-
Install Python dependencies:
pip install -r requirements.txt
-
Install R (version 4.2 or higher recommended).
-
Install required R packages:
install.packages(c("tidyverse", "data.table", ...)) # Add all required packages here
The sequence data generated in this study are available in the Gene Expression Omnibus (GEO) under accession ID GSE246414.
All Python scripts, R scripts, and Jupyter notebooks used for data analysis are provided and are fully executable.
The outputs from both the analysis scripts and notebooks, including all figures, are saved in the data/
and figure/
directories.
To reproduce these results, execute the scripts and notebooks as described belolw.
To run a Python analysis script:
python target_script.py
Replace target_script.py
with the name of the script you wish to execute.
To run an R script:
Rscript target_script.R
Replace target_script.R
with the name of the script you wish to execute.
To run a Jupyter notebook:
- Start the Jupyter Notebook server:
jupyter notebook
- In your web browser, navigate to the provided local URL (usually
http://localhost:8888
). - Open the desired
.ipynb
notebook file and run the cells as needed.