Skip to content

kvamsi7/kidney-disease-classification-dl-project

Repository files navigation

Kidney Tumour Detection using Deep Learning

Kidney Disease Classification MLflow DVC

Workflows

  1. Update config.yaml
  2. Update secrets.yaml [Optional]
  3. Update params.yaml
  4. Update the entity
  5. Update the configuration manager in src config
  6. Update the components
  7. Update the main.py
  8. Update the dvc.yaml 10.app.py

How to run ?

STEPS:

Clone the repository

https://github.com/kvamsi7/kidney-disease-classification-dl-project

STEP 01 - Create a conda environment after opening the repository

conda create -n cnnclsfr python=3.8 -y
conda activate cnnclsfr

STEP 02- install the requirements

pip install -r requirements.txt

MLFlow

cmd
  • mlflow ui

dagshub

dagshub

MLFLOW_TRACKING_URI = "https://dagshub.com/kvamsi7/kidney-disease-classification-dl-project.mlflow"\ MLFLOW_TRACKING_USERNAME = "username"
MLFLOW_TRACKING_PASSWORD = "d6b1c8cf96f5b7cc6f735f6e0c8d127e5ad9c82d"\

Run this to export as env variables:

export MLFLOW_TRACKING_URI = "https://dagshub.com/kvamsi7/kidney-disease-classification-dl-project.mlflow"

export MLFLOW_TRACKING_USERNAME = "username"

export MLFLOW_TRACKING_PASSWORD = "d6b1c8cf96f5b7cc6f735f6e0c8d127e5ad9c82d"

DVC cmd

  1. dvc init
  2. dvc repro
  3. dvc dag

About MLFlow & DVC

MLflow

  • Its Production Grade
  • Trace all of your experiments
  • Logging & taging your model

DVC

  • Its very littl weight for POC only
  • lite weight experiments tracker
  • It can perform Orchestration (Creating Pipelines)

AWS-CICD-Deployment-with-Github-Actions

1. Login to AWS console.

2. Create IAM user for deployment

#with specific access

1. EC2 access : It is virtual machine

2. ECR: Elastic Container registry to save your docker image in aws


#Description: About the deployment

1. Build docker image of the source code

2. Push your docker image to ECR

3. Launch Your EC2 

4. Pull Your image from ECR in EC2

5. Lauch your docker image in EC2

#Policy:

1. AmazonEC2ContainerRegistryFullAccess

2. AmazonEC2FullAccess

3. Create ECR repo to store/save docker image

- Save the URI: 566373416292.dkr.ecr.us-east-1.amazonaws.com/################################
440744223521.dkr.ecr.us-east-2.amazonaws.com/kidneyimgclsfr

4. Create EC2 machine (Ubuntu)

5. Open EC2 and Install docker in EC2 Machine:

#optinal

sudo apt-get update -y

sudo apt-get upgrade

#required

curl -fsSL https://get.docker.com -o get-docker.sh

sudo sh get-docker.sh

sudo usermod -aG docker ubuntu

newgrp docker

6. Configure EC2 as self-hosted runner:

setting>actions>runner>new self hosted runner> choose os> then run command one by one

7. Setup github secrets:

AWS_ACCESS_KEY_ID=

AWS_SECRET_ACCESS_KEY=

AWS_REGION = us-east-1

AWS_ECR_LOGIN_URI = demo>>  566373416292.dkr.ecr.ap-south-1.amazonaws.com

ECR_REPOSITORY_NAME = simple-app

About

Kidney Disease Classification MLflow DVC

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published