This project uses VADER Sentiment Analysis from NLTK to classify product reviews into positive, neutral, or negative categories.
We load product reviews, perform sentiment analysis, and visualize the sentiment distribution using Python tools.
Sentiment_Analysis_With_Extras.ipynb
: Main Jupyter Notebookdata/Reviews.csv
: Review datarequirements.txt
: Python dependencies.gitignore
: Files to exclude from Git
-
Clone this repository:
git clone https://github.com/yourusername/Sentiment-Analysis-Product-Reviews.git cd Sentiment-Analysis-Product-Reviews
-
Install dependencies:
pip install -r requirements.txt
-
Open the notebook:
jupyter notebook Sentiment_Analysis_With_Extras.ipynb
-
Make sure
data/Reviews.csv
is available in thedata/
folder.
- Python 3.7+
- See
requirements.txt
for full list
- VADER sentiment scores (
compound
,neg
,neu
,pos
) - Sentiment labels:
positive
,neutral
,negative
- Visualizations using Seaborn
- NLTK's VADER Sentiment Analyzer