Skip to content

ksachdeva/langchain-graphrag

Repository files navigation

GraphRAG - Powered by LangChain

Documentation build status pre-commit


This is an implementation of GraphRAG as described in

https://arxiv.org/pdf/2404.16130

From Local to Global: A Graph RAG Approach to Query-Focused Summarization

Official implementation by the authors of the paper is available at:

https://github.com/microsoft/graphrag/

Guides

Why re-implementation 🤔?

Personal Preference

While I generally prefer utilizing and refining existing implementations, as re-implementation often isn't optimal, I decided to take a different approach after encountering several challenges with the official version.

Issues with the Official Implementation

  • Lacks integration with popular frameworks like LangChain, LlamaIndex, etc.
  • Limited to OpenAI and AzureOpenAI models, with no support for other providers.

Why rely on established frameworks like LangChain?

Using an established foundation like LangChain offers numerous benefits. It abstracts various providers, whether related to LLMs, embeddings, vector stores, etc., allowing for easy component swapping without altering core logic or adding complex support. More importantly, a solid foundation like this lets you focus on the problem's core logic rather than reinventing the wheel.

LangChain also supports advanced features like batching and streaming, provided your components align with the framework’s guidelines. For instance, using chains (LCEL) allows you to take full advantage of these capabilities.

Modularity & Extensibility-focused design

The APIs are designed to be modular and extensible. You can replace any component with your own implementation as long as it implements the required interface.

Given the nature of the domain, this is important for conducting experiments by swapping out various components.

Install

pip install langchain-graphrag

Projects

There are 2 projects in the repo:

langchain_graphrag

This is the core library that implements the GraphRAG paper. It is built on top of the langchain library.

An example code for local search using the API

Below is a snippet taken from the simple-app to show the style of API and extensibility offered by the library.

Almost all the components (classes/functions) can be replaced by your own implementations. The library is designed to be modular and extensible.

# Reload the vector Store that stores
# the entity name & description embeddings
entities_vector_store = ChromaVectorStore(
    collection_name="entity_name_description",
    persist_directory=str(vector_store_dir),
    embedding_function=make_embedding_instance(
        embedding_type=embedding_type,
        model=embedding_model,
        cache_dir=cache_dir,
    ),
)

# Build the Context Selector using the default
# components; You can supply the various components
# and achieve as much extensibility as you want
# Below builds the one using default components.
context_selector = ContextSelector.build_default(
    entities_vector_store=entities_vector_store,
    entities_top_k=10,
    community_level=cast(CommunityLevel, level),
)

# Context Builder is responsible for taking the
# result of Context Selector & building the
# actual context to be inserted into the prompt
# Keeping these two separate further increases
# extensibility & maintainability
context_builder = ContextBuilder.build_default(
    token_counter=TiktokenCounter(),
)

# load the artifacts
artifacts = load_artifacts(artifacts_dir)

# Make a langchain retriever that relies on
# context selection & builder
retriever = LocalSearchRetriever(
    context_selector=context_selector,
    context_builder=context_builder,
    artifacts=artifacts,
)

# Build the LocalSearch object
local_search = LocalSearch(
    prompt_builder=LocalSearchPromptBuilder(),
    llm=make_llm_instance(llm_type, llm_model, cache_dir),
    retriever=retriever,
)

# it's a callable that returns the chain
search_chain = local_search()

# you could invoke
# print(search_chain.invoke(query))

# or, you could stream
for chunk in search_chain.stream(query):
    print(chunk, end="", flush=True)

Clone the repo

git clone https://github.com/ksachdeva/langchain-graphrag.git

Open in VSCode devcontainer (Recommended)

Devcontainer will install all the dependencies

If not using devcontainer

  1. Clone the repository
git clone https://github.com/ksachdeva/langchain-graphrag.git
cd langchain-graphrag
  1. Install dependencies (requires Python 3.10+ and uv)

Installation

You can install uv using the standalone installers or from PyPI:

Standalone installers

# On macOS and Linux
curl -LsSf https://astral.sh/uv/install.sh | sh

# On Windows
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"

From PyPI

# With pip
pip install uv

# Or pipx
pipx install uv

If installed via the standalone installer, you can update uv to the latest version:

uv self update

Setting up the environment and dependencies installation

uv sync

examples/simple-app

This is a simple typer based CLI app.

In terms of configuration it is limited by the number of command line options exposed.

That said, the way core library is written you can easily replace any component by your own implementation i.e. your choice of LLM, embedding models etc. Even some of the classes as long as they implement the required interface.

Note:

Make sure to rename .env.example to .env if you are using OpenAI or AzureOpenAI and fill in the necessary environment variables.

Indexing

# Step 1 - Index (run from the root of the repository)
uv run python examples/simple-app/app/main.py indexer index --input-file examples/input-data/book.txt --output-dir tmp --cache-dir tmp/cache --llm-type azure_openai --llm-model gpt-4o --embedding-type azure_openai --embedding-model text-embedding-3-large
(or)
uv run poe simple-app-indexer-azure 
# To see more options
$ uv run poe simple-app-indexer --help                  
Usage: main.py indexer index [OPTIONS]                                                                                            
                                                                                                                                   
╭─ Options ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ *  --input-file                                     FILE                          [default: None] [required]                    │
│ *  --output-dir                                     DIRECTORY                     [default: None] [required]                    │
│ *  --cache-dir                                      DIRECTORY                     [default: None] [required]                    │
│ *  --llm-type                                       [openai|azure_openai|ollama]  [default: None] [required]                    │
│ *  --llm-model                                      TEXT                          [default: None] [required]                    │
│ *  --embedding-type                                 [openai|azure_openai|ollama]  [default: None] [required]                    │
│ *  --embedding-model                                TEXT                          [default: None] [required]                    │
│    --chunk-size                                     INTEGER                       Chunk size for text splitting [default: 1200] │
│    --chunk-overlap                                  INTEGER                       Chunk overlap for text splitting              │
│                                                                                   [default: 100]                                │
│    --ollama-num-context                             INTEGER                       Context window size for ollama model          │
│                                                                                   [default: None]                               │
│    --enable-langsmith      --no-enable-langsmith                                  Enable Langsmith                              │
│                                                                                   [default: no-enable-langsmith]                │
│    --help                                                                         Show this message and exit.                   │
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯

Global Search

uv run poe simple-app-global-search --output-dir tmp --cache-dir tmp/cache --llm-type azure_openai --llm-model gpt-4o --query "What are the top themes in this story?"
(or) 
uv run poe simple-app-global-search-azure --query "What are the top themes in this story?"
$ uv run poe simple-app-global-search --help
Usage: main.py query global-search [OPTIONS]
                                                                                                                                            
╭─ Options ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ *  --output-dir                                     DIRECTORY                     [default: None] [required]                              │
│ *  --cache-dir                                      DIRECTORY                     [default: None] [required]                              │
│ *  --llm-type                                       [openai|azure_openai|ollama]  [default: None] [required]                              │
│ *  --llm-model                                      TEXT                          [default: None] [required]                              │
│ *  --query                                          TEXT                          [default: None] [required]                              │
│    --level                                          INTEGER                       Community level to search [default: 2]                  │
│    --ollama-num-context                             INTEGER                       Context window size for ollama model [default: None]    │
│    --enable-langsmith      --no-enable-langsmith                                  Enable Langsmith [default: no-enable-langsmith]         │
│    --help                                                                         Show this message and exit.                             │
╰───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯

Local Search

uv run poe simple-app-local-search --output-dir tmp --cache-dir tmp/cache --llm-type azure_openai --llm-model gpt-4o --embedding-type azure_openai --embedding-model text-embedding-3-large  --query "Who is Scrooge, and what are his main relationships?"
(or) 
uv run poe simple-app-local-search-azure --query "Who is Scrooge, and what are his main relationships?"
$ uv run poe simple-app-local-search --help
Usage: main.py query local-search [OPTIONS]                                                                                                 
                                                                                                                                             
╭─ Options ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ *  --output-dir                                     DIRECTORY                     [default: None] [required]                              │
│ *  --cache-dir                                      DIRECTORY                     [default: None] [required]                              │
│ *  --llm-type                                       [openai|azure_openai|ollama]  [default: None] [required]                              │
│ *  --llm-model                                      TEXT                          [default: None] [required]                              │
│ *  --query                                          TEXT                          [default: None] [required]                              │
│    --level                                          INTEGER                       Community level to search [default: 2]                  │
│ *  --embedding-type                                 [openai|azure_openai|ollama]  [default: None] [required]                              │
│ *  --embedding-model                                TEXT                          [default: None] [required]                              │
│    --ollama-num-context                             INTEGER                       Context window size for ollama model [default: None]    │
│    --enable-langsmith      --no-enable-langsmith                                  Enable Langsmith [default: no-enable-langsmith]         │
│    --help                                                                         Show this message and exit.                             │
╰───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯

See examples/simple-app/README.md for more details.

Available poe tasks

The project includes several convenient poe tasks (see pyproject.toml for complete list):

# Development
uv run poe test                     # Run tests
uv run poe lint                     # Check code quality
uv run poe format                   # Format code
uv run poe typecheck                # Type checking
uv run poe docs-serve               # Serve documentation locally

# Simple app shortcuts
uv run poe simple-app-indexer-azure       # Index with Azure OpenAI
uv run poe simple-app-indexer-openai      # Index with OpenAI
uv run poe simple-app-indexer-ollama      # Index with Ollama
uv run poe simple-app-report              # Generate reports (requires prior indexing)
uv run poe simple-app-global-search --query "your question"    # Basic global search
uv run poe simple-app-local-search --query "your question"     # Basic local search (needs --query)
uv run poe simple-app-global-search-azure --query "your question"  # Azure OpenAI global search
uv run poe simple-app-local-search-azure --query "your question"   # Azure OpenAI local search

Development workflow

# 1. Setup
uv sync

# 2. Create a .env file (if not already present) and fill in your API keys and other configuration values.

# 3. Index and search
uv run poe simple-app-indexer-azure
uv run poe simple-app-global-search-azure --query "What are the themes?"

# 4. Development (optional)
uv run poe test && uv run poe lint     # Test and check code

Roadmap / Things to do

The state of the library is far from complete.

Here are some of the things that need to be done to make it more useful:

  • Add more guides
  • Document the APIs
  • Add more tests

About

GraphRAG / From Local to Global: A Graph RAG Approach to Query-Focused Summarization

Topics

Resources

License

Stars

Watchers

Forks

Packages

 
 
 

Contributors 5

Languages