Zero-Trust Machine Learning Powered by Blockchain & Quantum-Safe Cryptography
Category | Technologies |
---|---|
Core AI | Federated Learning with ZK-Proofs |
Privacy | FHE (Kyber-1024), DP (ε<1.0) |
Blockchain | PoS Consensus, ERC-20 Incentives |
Security | TEEs (SGX/SEV), Hardware Roots of Trust |
Compliance | NIST PQC, ISO 27001, SOC 2 Type II |
-
Healthcare
- Train cancer detection models across hospitals without sharing patient data
- HIPAA-compliant model updates via zk-SNARKs
-
Financial Services
- Fraud detection using cross-bank transaction patterns
- PCI-DSS compliant training with FHE
-
Smart Cities
- Privacy-preserving traffic optimization across municipalities
- GDPR-compliant IoT sensor data aggregation
-
Defense
- Secure multi-nation threat intelligence sharing
- NIST 800-171 compliant model deployment
- Hardware: NVIDIA GPU (Ampere+), TPM 2.0, 64GB RAM
- OS: Ubuntu 22.04 LTS (FIPS 140-3 Kernel)
- Containers: Docker 24.0+ with containerd
# 1. Install Core Platform (Linux)
curl -sSL https://get.decentralized.ai | sudo bash -s -- --fips-mode
# 2. Verify Hardware Enclave
sudo decentralized-ai enclave attestation
# 3. Initialize Blockchain Network
decentralized-ai blockchain init --nodes 5 --consensus pos
# 4. Start Training Cluster
docker swarm init --advertise-addr $(hostname -I | cut -d' ' -f1)
docker stack deploy -c deployment/quantum-safe.yml ai_network
- Hardware: TPM-backed key storage
- Runtime: Enclave-protected execution
- Data: FHE with automatic key rotation
- Network: TLS 1.3 with Kyber-512 KEM
- Audit: Blockchain-immutable logs
from decentralized_ai import FederatedTrainer, ModelRegistry
# Initialize with HIPAA-compliant settings
trainer = FederatedTrainer(
model="encrypted_resnet50",
privacy_level="hipaa",
blockchain_endpoint="https://blockchain:8545"
)
# Load data from certified hospitals
trainer.load_data([
"pneumonia/dicom/techedge-hospital1",
"pneumonia/dicom/blockchain-healthcare"
])
# Start secure training round
trainer.run(
rounds=10,
batch_size=32,
differential_privacy={"epsilon": 0.9, "delta": 1e-6}
)
// nodes/node_client/src/main.rs
use decentralized_ai::fraud_detection;
fn main() {
let model = fraud_detection::Model::new()
.with_fhe(true)
.with_zkp("transactions_validity");
let transactions = load_pci_data!("credit_card_transactions");
let fraud_patterns = model.analyze(transactions);
submit_to_blockchain!(fraud_patterns);
}
- Data Privacy: GDPR Article 35 DPIA Certified
- Security: Common Criteria EAL4+
- AI Ethics: IEEE 7000-2021 Standard
- Quantum Safety: NIST PQC Finalist Algorithms
- Provenance Tracking
// Blockchain-verified model lineage function verifyModel(bytes32 modelId) public view returns (address[] memory) { return modelRegistry.getContributors(modelId); }
- Military-Grade Encryption
# Quantum-safe model serialization from decentralized_ai.security import QuantumSeal sealed_model = QuantumSeal.encrypt( model.state_dict(), policy="NIST_PQC_LEVEL5" )
- Automatic Compliance
# Generate audit reports decentralized-ai compliance report --standard gdpr --output audit.pdf
AGPL-3.0 with Commercial Exception (CE)
For enterprise licensing, contact bajpaikrishna715@gmail.com