Skip to content

koulanurag/maze-world

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

88 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

maze-world

Random maze environments with different size and complexity for reinforcement learning and planning research. This is in-particular to investigate generalization and planning ability in dynamically changing environment.

Python package Python Version pages-build-deployment Sphinx: Render docs Upload Python Package Open In Colab

Disclaimer: This project is largely a amalgam of references mentioned here.

Installation

  • Using PyPI:

    pip install maze-world
    
  • Directly from source (recommended):

    git clone https://github.com/koulanurag/maze-world.git
    cd maze-world
    pip install -e .

Environments Zoo!

RandomMaze-11x11-v0 RandomMaze-21x21-v0 RandomMaze-31x31-v0 RandomMaze-101x101-v0
RandomMAze-11x11-v0.gif RandomMAze-21x21-v0.gif RandomMAze-11x11-v0.gif RandomMAze-21x21-v0.gif

See all here.

Quick-Start:

import gymnasium as gym

env = gym.make("maze_world:RandomMaze-11x11-v0", render_mode="human")
terminated, truncated = False, False
observation, info = env.reset(seed=0, options={})
episode_score = 0.

while not (terminated or truncated):
    action = env.action_space.sample()
    observation, reward, terminated, truncated, info = env.step(action)
    episode_score += reward

env.close()

See entire quick-start guide here.

Testing:

  • Install: pip install -e ".[test]"
  • Run: pytest -v --xdoc --cov=./ --cov-report=xml

Development:

If you would like to develop it further; begin by installing following:

pip install -e ".[develop]"

References:

  1. Gym-Maze
  2. Mazelab
  3. Custom Gym environment based out of gymnasium
  4. Wilson Maze Generator

About

Random maze environments with different size and complexity for reinforcement learning research.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages