"Successful Misunderstandings: Learning to Coordinate Without Being Understood",
Nikolaos Kondylidis, Anil Yaman, Frank van Harmelen, Erman Acar, Annette ten Teije,
Presented at the 22nd European Conference on Multi-Agent Systems (EUMAS 2025), Bucharest
python3 -m venv suc_mis_venv
source suc_mis_venv/bin/activate
pip install -r requirements.txt
python main.py experiment.init_population=2 experiment.final_population=3 experiment.reward_table=random_simple experiment.experiment_setting=population_increase_experiment experiment.episodes=10000 experiment.repetitions=1000 agent.apply_epsilon_in_episode_ratio=0.5 experiment.num_workers=10
python main.py experiment.init_population=3 experiment.final_population=4 experiment.reward_table=random_simple experiment.experiment_setting=population_increase_experiment experiment.episodes=10000 experiment.repetitions=1000 agent.apply_epsilon_in_episode_ratio=0.5 experiment.num_workers=10
python main.py experiment.population_size=3 experiment.reward_table=random_simple experiment.experiment_setting=agents_initially_grouped_experiment experiment.episodes=10000 experiment.repetitions=1000 agent.apply_epsilon_in_episode_ratio=0.5 experiment.num_workers=10
% Experiment 1
python main.py experiment.init_population=2 experiment.final_population=3 experiment.reward_table=random_simple_non_symmetric experiment.experiment_setting=population_increase_experiment experiment.episodes=10000 experiment.repetitions=1000 agent.apply_epsilon_in_episode_ratio=0.5
% Experiment 2
python main.py experiment.init_population=3 experiment.final_population=4 experiment.reward_table=random_simple_non_symmetric experiment.experiment_setting=population_increase_experiment experiment.episodes=10000 experiment.repetitions=1000 agent.apply_epsilon_in_episode_ratio=0.5
% Experiment 3
python main.py experiment.population_size=3 experiment.reward_table=random_simple_non_symmetric experiment.experiment_setting=agents_initially_grouped_experiment experiment.episodes=10000 experiment.repetitions=1000 agent.apply_epsilon_in_episode_ratio=0.5
% Experiment 1
python main.py experiment.init_population=2 experiment.final_population=3 experiment.reward_table=random_3x3 experiment.experiment_setting=population_increase_experiment experiment.episodes=10000 experiment.repetitions=1000 agent.apply_epsilon_in_episode_ratio=0.5
% Experiment 2
python main.py experiment.init_population=3 experiment.final_population=4 experiment.reward_table=random_3x3 experiment.experiment_setting=population_increase_experiment experiment.episodes=10000 experiment.repetitions=1000 agent.apply_epsilon_in_episode_ratio=0.5
% Experiment 3
python main.py experiment.population_size=3 experiment.reward_table=random_3x3 experiment.experiment_setting=agents_initially_grouped_experiment experiment.episodes=10000 experiment.repetitions=1000 agent.apply_epsilon_in_episode_ratio=0.5
python main.py experiment.population_size=4 experiment.reward_table=random_simple experiment.experiment_setting=agents_initially_grouped_experiment experiment.episodes=10000 experiment.repetitions=1000 agent.apply_epsilon_in_episode_ratio=0.5