Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,12 @@ and this project adheres to [Semantic Versioning v2.0.0](https://semver.org/spec

### Changed

- Formulae fix

## [1.0.2] - 2024-09-23

### Changed

- Readability improvements
- Update keywords
- Add source files link
Expand Down
Binary file modified out/OnTheBinomialTheoremAndDiscreteConvolution.pdf
Binary file not shown.
12 changes: 4 additions & 8 deletions src/sections/03-introduction-and-main-results.tex
Original file line number Diff line number Diff line change
Expand Up @@ -60,10 +60,6 @@
\end{align*}
From the other side, the theorem~\eqref{thm_odd_power_by_macaulays_convolution_strict} provides an odd-power
polynomial identity as follows
\begin{equation*}
x^{2m+1} = \sum_{r=0}^{m} \coeffA{m}{r} \sum_{k=1}^{x} k^r (x-k)^r
\end{equation*}
so that
\begin{equation*}
-1 + x^{2m+1} = \sum_{r=0}^{m} \coeffA{m}{r} \convPower{n}{r}{x}
= \sum_{r=0}^{m} \coeffA{m}{r} \sum_{k=1}^{x-1} k^r (x-k)^r
Expand All @@ -83,17 +79,17 @@
\begin{equation*}
\begin{split}
(x-2a)
^{2m+1} + 1 = \sum_{r=0}^{m} \coeffA{m}{r} ((t-k)^r \ast (t-k)^r)[x] \\
= \sum_{r=0}^{m} \coeffA{m}{r} \sum_{k=a}^{x-a-1} (k-a)^r (x-k-a)^r
^{2m+1} + 1 &= \sum_{r=0}^{m} \coeffA{m}{r} ((t-k)^r \ast (t-k)^r)[x] \\
&= \sum_{r=0}^{m} \coeffA{m}{r} \sum_{k=a}^{x-a} (k-a)^r (x-k-a)^r
\end{split}
\end{equation*}
Similarly, the following binomial holds.
For every $n > 0$
\begin{equation*}
\begin{split}
(x-2a)
^{2m+1} - 1 = \sum_{r=0}^{m} \coeffA{m}{r} ((t-k)^r \ast (t-k)^r)[x] \\
= \sum_{r=0}^{m} \coeffA{m}{r} \sum_{k=a+1}^{x-a-1} (k-a)^r (x-k-a)^r
^{2m+1} - 1 &= \sum_{r=0}^{m} \coeffA{m}{r} ((t-k)^r \ast (t-k)^r)[x] \\
&= \sum_{r=0}^{m} \coeffA{m}{r} \sum_{k=a+1}^{x-a-1} (k-a)^r (x-k-a)^r
\end{split}
\end{equation*}
This manuscript does not contain any historical context about the polynomial $\polynomialP{m}{b}{x}$,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -61,17 +61,17 @@
\begin{equation}
\label{eq:parametric-identity}
\begin{split}
(x-2a)^{2m+1} + 1 = \sum_{r=0}^{m} \coeffA{m}{r} ((t-k)^r \ast (t-k)^r)[x] \\
= \sum_{r=0}^{m} \coeffA{m}{r} \sum_{k=a}^{x-a-1} (k-a)^r (x-k-a)^r
(x-2a)^{2m+1} + 1 &= \sum_{r=0}^{m} \coeffA{m}{r} ((t-k)^r \ast (t-k)^r)[x] \\
&= \sum_{r=0}^{m} \coeffA{m}{r} \sum_{k=a}^{x-a} (k-a)^r (x-k-a)^r
\end{split}
\end{equation}
Similarly, the following binomial holds.
For every $n > 0$
\begin{equation}
\label{eq:parametric-identity-strict}
\begin{split}
(x-2a)^{2m+1} - 1 = \sum_{r=0}^{m} \coeffA{m}{r} ((t-k)^r \ast (t-k)^r)[x] \\
= \sum_{r=0}^{m} \coeffA{m}{r} \sum_{k=a+1}^{x-a-1} (k-a)^r (x-k-a)^r
(x-2a)^{2m+1} - 1 &= \sum_{r=0}^{m} \coeffA{m}{r} ((t-k)^r \ast (t-k)^r)[x] \\
&= \sum_{r=0}^{m} \coeffA{m}{r} \sum_{k=a+1}^{x-a-1} (k-a)^r (x-k-a)^r
\end{split}
\end{equation}
To validate equations~\eqref{eq:parametric-identity} and~\eqref{eq:parametric-identity-strict}
Expand Down