Code for Feature Space Expansion and Compression with Spatial-spectral Augmentation for Hyperspectral Image Class-Incremental Learning.
Models were trained on the Ubutnu 20.04 system. The GPU used in training is Nvidia RTX 4090. The model is built with pytorch 1.11.0, and torchvision 0.12.0.
conda env create -f environment.yml
python3 -mhylearn --options options/LSC/lsc_SalinasA.yaml options/data/SalinasA.yaml --initial-increment 4 --increment 4 --device 0 --label LSC_SalinasA_4steps
python3 -mhylearn --options options/LSC/lsc_PAU.yaml options/data/PAU.yaml --initial-increment 3 --increment 3 --device 0 --label LSC_PAU_4steps
python3 -mhylearn --options options/LSC/lsc_LK.yaml options/data/longkou.yaml --initial-increment 3 --increment 3 --device 0 --label LSC_LK_4steps
python3 -mhylearn --options options/LSC/lsc_HC.yaml options/data/hanchuan.yaml --initial-increment 4 --increment 4 --device 0 --label LSC_HC_4steps
Figure 2. Classification maps of comparative methods on the Salinas dataset. (a) Bic, (b) PODNet, (c) FORSTER, (d) DRC, (e) FEICA-CIL.
The implementation extends and refines work originally developed by
@inproceedings{douillard2020ghost,
title={Insight From the Future for Continual Learning},
author={Arthur Douillard and Eduardo Valle and Charles Ollion and Thomas Robert and Matthieu Cord},
booktitle={arXiv preprint library},
year={2020}
}
and
@ARTICLE{NCSC-TGRS-2022,
author={Cai, Yaoming and Zhang, Zijia and Ghamisi, Pedram and Ding, Yao and Liu, Xiaobo and Cai, Zhihua and Gloaguen, Richard}
journal={IEEE Transactions on Geoscience and Remote Sensing},
title={Superpixel Contracted Neighborhood Contrastive Subspace Clustering Network for Hyperspectral Image},
year={2022},
volume={},
number={},
pages={1-13},
doi={10.1109/TGRS.2022.3179637}}