Skip to content

kineticadb/mcp-kinetica

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

48 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Kinetica Logo

Kinetica MCP Server

Overview

This project contains the source code for the Kinetica Model Context Protocol (MCP) server, as well as examples of how to configure and run the server.

The Kinetica MCP server exposes tools and resources for interacting with Kinetica's database, SQL-GPT contexts, and real-time monitoring.

Features

Inferencing Modes

The MCP server has separate modes depending on how you want the LLM to generate SQL. Each mode contains a different set tools to facilitate the workflow.

  • Kinetica Inference Mode (mcp-kinetica-ki)

    The LLM will choose a SQL context and use Kinetica's native text-to-sql capabilities via the generate_sql() tool. This requires that you have appropriate SQL contexts configured in Kinetica. (see SQL-GPT)

  • Local Inference Mode (mcp-kinetica-li)

    The LLM will retrieve table descriptions generate its own SQL. This mode will result in more tokens being consumed from table descriptions but it does not require the use of SQL contexts.

Tools

  • list_tables()

    List all available tables, views, and schemas in the Kinetica instance. Results will be filtered by the KINETICA_SCHEMA env variable.

  • describe_table(table_name: str)

    Return a dictionary of column name to column type.

  • query_sql(sql: str, limit: int = 10)

    Run a read-only SQL query on the database, returns results as JSON.

  • get_records(table_name: str, limit: int = 10)

    Fetch raw records from a table as a list of dictionaries.

  • insert_records(table_name: str, records: list[dict])

    Insert a list of records into the specified table.

  • start_table_monitor(table: str)

    Start a real-time monitor for inserts, updates, and deletes on a table.

  • list_sql_contexts()

    List available SQL contexts and their corresponding tables.

  • generate_sql(context_name: str, question: str)

    Generate SQL queries using Kinetica's text-to-SQL capabilities.

Resources

  • sql-context://{context_name}

    Return a structured view of a SQL-GPT context, including:

    • context_name: Fully qualified table name.
    • tables: Table descriptions containing description, table rules, and column comments.
    • rules: List of defined semantic rules.
    • samples: One shot training examples.

Environment Variables

The server should be configured with these environment variables.

  • KINETICA_URL: The Kinetica API URL (e.g. http://your-kinetica-host:9191)
  • KINETICA_USER: Kientica username
  • KINETICA_PASSWD: Kinetica password
  • KINETICA_SCHEMA: Filter tables by schema (optional, default=*)
  • KINETICA_LOGLEVEL: Server Loglevel (optional, default=warning)

Integrate with Claude Desktop

In this example we will invoke the uv run command to install the mcp-kinetica package automatically when Claude desktop starts. For this to work we will use uv to create a virtual environment with python >=3.10 that will be used by the MCP runtime.

If you have not already downloaded Claude desktop you can get it at https://claude.ai/download.

Note: As an alternative you could install the mcp-kinetica with pip and avoid using UV but it is recommended in the fastmcp documentation.

  1. Make sure you have UV installed.

    pip install --upgrade uv 
  2. Create the python virtual environment.

    You must choose a directory <your_venv_path> for the python runtime.

    uv venv --python 3.12 <your_venv_path>
  3. Make a note of the python and uv paths.

    UV and your VENV could be using different python interpreters. Make a note of these paths and save them for the claude config file.

    Note: Windows users should activate with <your_venv_path>/bin/activate.bat

    $ source <your_venv_path>/bin/activate
    $ which uv
    <uv_exe_path>
    $ which python
    <python_exe_path>
  4. Open your Claude Desktop configuration file:

    The app provides a shortcut in Settings->Developer->Edit Config.

    • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
    • Windows: %APPDATA%/Claude/claude_desktop_config.json
  5. Add an mcp-kinetica entry to the mcpServers block:

    You will need to edit the <uv_exe_path>, <python_exe_path>, and Kinetica connection info. If you want to use local inference mode then replace mcp-kinetica-ki with mcp-kinetica-li.

    {
      "mcpServers": {
        "mcp-kinetica": {
          "command": "<uv_exe_path>",
          "args": [
            "run",
            "--python", "<python_exe_path>",
            "--with", "setuptools",
            "--with", "mcp-kinetica",
            "mcp-kinetica-ki"
          ],
          "env": {
            "KINETICA_URL": "<http://your-kinetica-host:9191>",
            "KINETICA_USER": "<your_username>",
            "KINETICA_PASSWD": "<your_password>",
            "KINETICA_LOGLEVEL": "INFO",
            "KINETICA_SCHEMA": "*"
          }
        }
      }
    }
  6. Restart Claude Desktop to apply the changes.

    In Claude Desktop open Settings->Connectors and look for an entry named mcp-kinetica.

Test with MCP Inspector

The MCP Inspector is a web UI used for exploring the features of an MCP Service and simulating the activities of an LLM model. You will need Node.js >= 18 for the inspector.

  1. Clone the GitHub project:

    git clone git@github.com:kineticadb/mcp-kinetica.git
    cd mcp-kinetica
  2. Create a .env file in your project root with the following keys:

    KINETICA_URL=http://<your-kinetica-host>:9191
    KINETICA_USER=<your_username>
    KINETICA_PASSWD=<your_password>
  3. Update Python environment with uv:

    [~/mcp-kinetica]$ pip install uv
    [~/mcp-kinetica]$ uv sync
  4. Activate Python environment:

    • Windows:

      .venv\Scripts\activate.bat
    • Linux:

      [~/mcp-kinetica]$ source .venv/bin/activate
  5. Use fastmcp dev for an interactive testing environment with the MCP Inspector:

    [~/mcp-kinetica]$ fastmcp dev mcp_kinetica/server_ki.py 

    To create a local package in editable mode:

    [~/mcp-kinetica]$ fastmcp dev mcp_kinetica/server_ki.py --with-editable .
  6. Launch MCP Inspector in a browser, pointing at the URL output by the fastmcp command; for instance http://127.0.0.1:6274, given this output:

    Starting MCP inspector...
    Proxy server listening on port 6277
    MCP Inspector is up and running at http://127.0.0.1:6274

Note: MCP inspector will default to uv as the command to run. If not using uv for package management, the MCP Inspector parameters can be updated as follows:

  • Command: python3
  • Arguments: mcp_kinetica/server_ki.py

Test with Pytest

This section describes how to run the test suite under tests/test_server_ki.py.

Note: The uv utility is not required.

  1. Clone the GitHub project:

    git clone git@github.com:kineticadb/mcp-kinetica.git
    cd mcp-kinetica
  2. Create a .env file in your project root with the following keys:

    KINETICA_URL=http://<your-kinetica-host>:9191
    KINETICA_USER=<your_username>
    KINETICA_PASSWD=<your_password>
  3. Install the test dependencies:

    [~/mcp-kinetica]$ pip install --group test
  4. Run pytest:

    [~/mcp-kinetica]$ pytest -rA
    [...]
    PASSED tests/test_server_ki.py::test_list_contexts
    PASSED tests/test_server_ki.py::test_generate_sql
    PASSED tests/test_server_li.py::test_create_test_table
    PASSED tests/test_server_li.py::test_list_tables
    PASSED tests/test_server_li.py::test_describe_table
    PASSED tests/test_server_li.py::test_get_records
    PASSED tests/test_server_li.py::test_insert_records
    PASSED tests/test_server_li.py::test_query_sql_success
    PASSED tests/test_server_li.py::test_query_sql_failure
    PASSED tests/test_server_li.py::test_create_context
    PASSED tests/test_server_li.py::test_get_sql_context
    PASSED tests/test_server_li.py::test_get_prompt

Support

For bugs, please submit an issue on Github.

For support, you can post on stackoverflow under the kinetica tag or Slack.

Contact Us

References

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages