Skip to content

kaleidoscopical/fcn

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

fcn - Fully Convolutional Networks

https://travis-ci.org/wkentaro/fcn.svg?branch=master

This is Chainer implementation of fcn.berkeleyvision.org.

Features

  • Copy caffemodel to chainermodel. [v1.0.0]
  • Forwarding with Chainer for pascal dataset. [v1.0.0]
  • Training with Chainer for pascal dataset. [v2.0.0]
  • Training for APC2015 dataset. [v3.0.0]

License

Copyright (C) 2016 Kentaro Wada
Released under the MIT license

Installation

# Ubuntu: install required libraries via apt
sudo apt-get install liblapack-dev   # for numpy
sudo apt-get install libhdf5-dev     # for h5py
# macOS: install required libraries via brew
brew install gfortran  # for numpy
brew install hdf5      # for h5py

pip install fcn

Inference

Inference is done as below:

# Download sample image
wget https://farm2.staticflickr.com/1522/26471792680_a485afb024_z_d.jpg -O sample.jpg

# forwaring of the networks
fcn_infer.py --img-files sample.jpg --gpu -1  # cpu mode
fcn_infer.py --img-files sample.jpg  # gpu mode

static/fcn8s_26471792680.jpg

Original Image: https://www.flickr.com/photos/faceme/26471792680/

Training

cd examples/pascal
./download_dataset.py

./train_fcn32s.py

Currently we support only training FCN32s. The learning curve looks like below:

examples/pascal/static/learning_scale0.8.gif

About

Fully Convolutional Networks (Chainer Implementation)

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%