Skip to content

Export NeMo FastConformer Hybrid Transducer Large Streaming to ONNX #844

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
May 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
name: export-nemo-speaker-verification-to-onnx
name: export-nemo-fast-conformer-ctc-to-onnx

on:
workflow_dispatch:
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
name: export-nemo-fast-conformer-transducer-to-onnx

on:
workflow_dispatch:

concurrency:
group: export-nemo-fast-conformer-hybrid-transducer-to-onnx-${{ github.ref }}
cancel-in-progress: true

jobs:
export-nemo-fast-conformer-hybrid-transducer-to-onnx:
if: github.repository_owner == 'k2-fsa' || github.repository_owner == 'csukuangfj'
name: NeMo transducer
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [macos-latest]
python-version: ["3.10"]

steps:
- uses: actions/checkout@v4

- name: Setup Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}

- name: Install NeMo
shell: bash
run: |
BRANCH='main'
pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[asr]
pip install onnxruntime
pip install kaldi-native-fbank
pip install soundfile librosa

- name: Run
shell: bash
run: |
cd scripts/nemo/fast-conformer-hybrid-transducer-ctc
./run-transducer.sh

mv -v sherpa-onnx-nemo* ../../..

- name: Download test waves
shell: bash
run: |
mkdir test_wavs
pushd test_wavs
curl -SL -O https://hf-mirror.com/csukuangfj/sherpa-onnx-nemo-ctc-en-conformer-small/resolve/main/test_wavs/0.wav
curl -SL -O https://hf-mirror.com/csukuangfj/sherpa-onnx-nemo-ctc-en-conformer-small/resolve/main/test_wavs/1.wav
curl -SL -O https://hf-mirror.com/csukuangfj/sherpa-onnx-nemo-ctc-en-conformer-small/resolve/main/test_wavs/8k.wav
curl -SL -O https://hf-mirror.com/csukuangfj/sherpa-onnx-nemo-ctc-en-conformer-small/resolve/main/test_wavs/trans.txt
popd

cp -av test_wavs ./sherpa-onnx-nemo-streaming-fast-conformer-transducer-80ms
cp -av test_wavs ./sherpa-onnx-nemo-streaming-fast-conformer-transducer-480ms
cp -av test_wavs ./sherpa-onnx-nemo-streaming-fast-conformer-transducer-1040ms

tar cjvf sherpa-onnx-nemo-streaming-fast-conformer-transducer-80ms.tar.bz2 sherpa-onnx-nemo-streaming-fast-conformer-transducer-80ms
tar cjvf sherpa-onnx-nemo-streaming-fast-conformer-transducer-480ms.tar.bz2 sherpa-onnx-nemo-streaming-fast-conformer-transducer-480ms
tar cjvf sherpa-onnx-nemo-streaming-fast-conformer-transducer-1040ms.tar.bz2 sherpa-onnx-nemo-streaming-fast-conformer-transducer-1040ms

- name: Release
uses: svenstaro/upload-release-action@v2
with:
file_glob: true
file: ./*.tar.bz2
overwrite: true
repo_name: k2-fsa/sherpa-onnx
repo_token: ${{ secrets.UPLOAD_GH_SHERPA_ONNX_TOKEN }}
tag: asr-models
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
import argparse
from typing import Dict

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
import argparse
from typing import Dict

import nemo.collections.asr as nemo_asr
import onnx
import torch


def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model",
type=str,
required=True,
choices=["80", "480", "1040"],
)
return parser.parse_args()


def add_meta_data(filename: str, meta_data: Dict[str, str]):
"""Add meta data to an ONNX model. It is changed in-place.

Args:
filename:
Filename of the ONNX model to be changed.
meta_data:
Key-value pairs.
"""
model = onnx.load(filename)
while len(model.metadata_props):
model.metadata_props.pop()

for key, value in meta_data.items():
meta = model.metadata_props.add()
meta.key = key
meta.value = str(value)

onnx.save(model, filename)


@torch.no_grad()
def main():
args = get_args()
model_name = f"stt_en_fastconformer_hybrid_large_streaming_{args.model}ms"

asr_model = nemo_asr.models.ASRModel.from_pretrained(model_name=model_name)

with open("./tokens.txt", "w", encoding="utf-8") as f:
for i, s in enumerate(asr_model.joint.vocabulary):
f.write(f"{s} {i}\n")
f.write(f"<blk> {i+1}\n")
print("Saved to tokens.txt")

decoder_type = "rnnt"
asr_model.change_decoding_strategy(decoder_type=decoder_type)
asr_model.eval()

assert asr_model.encoder.streaming_cfg is not None
if isinstance(asr_model.encoder.streaming_cfg.chunk_size, list):
chunk_size = asr_model.encoder.streaming_cfg.chunk_size[1]
else:
chunk_size = asr_model.encoder.streaming_cfg.chunk_size

if isinstance(asr_model.encoder.streaming_cfg.pre_encode_cache_size, list):
pre_encode_cache_size = asr_model.encoder.streaming_cfg.pre_encode_cache_size[1]
else:
pre_encode_cache_size = asr_model.encoder.streaming_cfg.pre_encode_cache_size
window_size = chunk_size + pre_encode_cache_size

print("chunk_size", chunk_size)
print("pre_encode_cache_size", pre_encode_cache_size)
print("window_size", window_size)

chunk_shift = chunk_size

# cache_last_channel: (batch_size, dim1, dim2, dim3)
cache_last_channel_dim1 = len(asr_model.encoder.layers)
cache_last_channel_dim2 = asr_model.encoder.streaming_cfg.last_channel_cache_size
cache_last_channel_dim3 = asr_model.encoder.d_model

# cache_last_time: (batch_size, dim1, dim2, dim3)
cache_last_time_dim1 = len(asr_model.encoder.layers)
cache_last_time_dim2 = asr_model.encoder.d_model
cache_last_time_dim3 = asr_model.encoder.conv_context_size[0]

asr_model.set_export_config({"decoder_type": "rnnt", "cache_support": True})

# asr_model.export("model.onnx")
asr_model.encoder.export("encoder.onnx")
asr_model.decoder.export("decoder.onnx")
asr_model.joint.export("joiner.onnx")
# model.onnx is a suffix.
# It will generate two files:
# encoder-model.onnx
# decoder_joint-model.onnx

meta_data = {
"vocab_size": asr_model.decoder.vocab_size,
"window_size": window_size,
"chunk_shift": chunk_shift,
"normalize_type": "None",
"cache_last_channel_dim1": cache_last_channel_dim1,
"cache_last_channel_dim2": cache_last_channel_dim2,
"cache_last_channel_dim3": cache_last_channel_dim3,
"cache_last_time_dim1": cache_last_time_dim1,
"cache_last_time_dim2": cache_last_time_dim2,
"cache_last_time_dim3": cache_last_time_dim3,
"pred_rnn_layers": asr_model.decoder.pred_rnn_layers,
"pred_hidden": asr_model.decoder.pred_hidden,
"subsampling_factor": 8,
"model_type": "EncDecHybridRNNTCTCBPEModel",
"version": "1",
"model_author": "NeMo",
"url": f"https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/{model_name}",
"comment": "Only the transducer branch is exported",
}
add_meta_data("encoder.onnx", meta_data)

print(meta_data)


if __name__ == "__main__":
main()
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
#!/usr/bin/env bash
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)

set -ex

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
#!/usr/bin/env bash
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)

set -ex

if [ ! -e ./0.wav ]; then
# curl -SL -O https://hf-mirror.com/csukuangfj/icefall-asr-librispeech-streaming-zipformer-small-2024-03-18/resolve/main/test_wavs/0.wav
curl -SL -O https://huggingface.co/csukuangfj/icefall-asr-librispeech-streaming-zipformer-small-2024-03-18/resolve/main/test_wavs/0.wav
fi

ms=(
80
480
1040
)

for m in ${ms[@]}; do
./export-onnx-transducer.py --model $m
d=sherpa-onnx-nemo-streaming-fast-conformer-transducer-${m}ms
if [ ! -f $d/encoder.onnx ]; then
mkdir -p $d
mv -v encoder.onnx $d/
mv -v decoder.onnx $d/
mv -v joiner.onnx $d/
mv -v tokens.txt $d/
ls -lh $d
fi
done

# Now test the exported models

for m in ${ms[@]}; do
d=sherpa-onnx-nemo-streaming-fast-conformer-transducer-${m}ms
python3 ./test-onnx-transducer.py \
--encoder $d/encoder.onnx \
--decoder $d/decoder.onnx \
--joiner $d/joiner.onnx \
--tokens $d/tokens.txt \
--wav ./0.wav
done
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)

import onnxruntime


def show(filename):
session_opts = onnxruntime.SessionOptions()
session_opts.log_severity_level = 3
sess = onnxruntime.InferenceSession(filename, session_opts)
for i in sess.get_inputs():
print(i)

print("-----")

for i in sess.get_outputs():
print(i)


def main():
print("=========encoder==========")
show("./encoder.onnx")

print("=========decoder==========")
show("./decoder.onnx")

print("=========joiner==========")
show("./joiner.onnx")


if __name__ == "__main__":
main()

"""
=========encoder==========
NodeArg(name='audio_signal', type='tensor(float)', shape=['audio_signal_dynamic_axes_1', 80, 'audio_signal_dynamic_axes_2'])
NodeArg(name='length', type='tensor(int64)', shape=['length_dynamic_axes_1'])
NodeArg(name='cache_last_channel', type='tensor(float)', shape=['cache_last_channel_dynamic_axes_1', 17, 'cache_last_channel_dynamic_axes_2', 512])
NodeArg(name='cache_last_time', type='tensor(float)', shape=['cache_last_time_dynamic_axes_1', 17, 512, 'cache_last_time_dynamic_axes_2'])
NodeArg(name='cache_last_channel_len', type='tensor(int64)', shape=['cache_last_channel_len_dynamic_axes_1'])
-----
NodeArg(name='outputs', type='tensor(float)', shape=['outputs_dynamic_axes_1', 512, 'outputs_dynamic_axes_2'])
NodeArg(name='encoded_lengths', type='tensor(int64)', shape=['encoded_lengths_dynamic_axes_1'])
NodeArg(name='cache_last_channel_next', type='tensor(float)', shape=['cache_last_channel_next_dynamic_axes_1', 17, 'cache_last_channel_next_dynamic_axes_2', 512])
NodeArg(name='cache_last_time_next', type='tensor(float)', shape=['cache_last_time_next_dynamic_axes_1', 17, 512, 'cache_last_time_next_dynamic_axes_2'])
NodeArg(name='cache_last_channel_next_len', type='tensor(int64)', shape=['cache_last_channel_next_len_dynamic_axes_1'])
=========decoder==========
NodeArg(name='targets', type='tensor(int32)', shape=['targets_dynamic_axes_1', 'targets_dynamic_axes_2'])
NodeArg(name='target_length', type='tensor(int32)', shape=['target_length_dynamic_axes_1'])
NodeArg(name='states.1', type='tensor(float)', shape=[1, 'states.1_dim_1', 640])
NodeArg(name='onnx::LSTM_3', type='tensor(float)', shape=[1, 1, 640])
-----
NodeArg(name='outputs', type='tensor(float)', shape=['outputs_dynamic_axes_1', 640, 'outputs_dynamic_axes_2'])
NodeArg(name='prednet_lengths', type='tensor(int32)', shape=['prednet_lengths_dynamic_axes_1'])
NodeArg(name='states', type='tensor(float)', shape=[1, 'states_dynamic_axes_1', 640])
NodeArg(name='74', type='tensor(float)', shape=[1, 'LSTM74_dim_1', 640])
=========joiner==========
NodeArg(name='encoder_outputs', type='tensor(float)', shape=['encoder_outputs_dynamic_axes_1', 512, 'encoder_outputs_dynamic_axes_2'])
NodeArg(name='decoder_outputs', type='tensor(float)', shape=['decoder_outputs_dynamic_axes_1', 640, 'decoder_outputs_dynamic_axes_2'])
-----
NodeArg(name='outputs', type='tensor(float)', shape=['outputs_dynamic_axes_1', 'outputs_dynamic_axes_2', 'outputs_dynamic_axes_3', 1025])

"""
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)

import argparse
from pathlib import Path
Expand Down
Loading