Skip to content

Various fixes to TambyVanderpooten #110

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jun 10, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 21 additions & 17 deletions src/algorithms/TambyVanderpooten.jl
Original file line number Diff line number Diff line change
Expand Up @@ -30,19 +30,20 @@ function _update_search_region(
y::Vector{Float64},
yN::Vector{Float64},
)
bounds_to_remove = Vector{Float64}[]
p = length(y)
bounds_to_remove = Vector{Float64}[]
bounds_to_add = Dict{Vector{Float64},Vector{Vector{Vector{Float64}}}}()
for u in keys(U_N)
if all(y .< u)
push!(bounds_to_remove, u)
for l in 1:p
u_l = _get_child(u, y, l)
N = [
k != l ? [yi for yi in U_N[u][k] if yi[l] < y[l]] : [y]
k == l ? [y] : [yi for yi in U_N[u][k] if yi[l] < y[l]]
for k in 1:p
]
if all(!isempty(N[k]) for k in 1:p if u_l[k] yN[k])
U_N[u_l] = N
if all(!isempty(N[k]) for k in 1:p if k != l && u_l[k] != yN[k])
bounds_to_add[u_l] = N
end
end
else
Expand All @@ -53,27 +54,31 @@ function _update_search_region(
end
end
end
for bound_to_remove in bounds_to_remove
delete!(U_N, bound_to_remove)
for u in bounds_to_remove
delete!(U_N, u)
end
merge!(U_N, bounds_to_add)
return
end

function _get_child(u::Vector{Float64}, y::Vector{Float64}, k::Int)
@assert length(u) == length(y)
return vcat(u[1:k-1], y[k], u[k+1:length(y)])
return vcat(u[1:(k-1)], y[k], u[(k+1):length(y)])
end

function _select_search_zone(
U_N::Dict{Vector{Float64},Vector{Vector{Vector{Float64}}}},
yI::Vector{Float64},
yN::Vector{Float64},
)
i, j =
argmax([
prod(_project(u, k) - _project(yI, k)) for k in 1:length(yI),
u in keys(U_N)
]).I
return i, collect(keys(U_N))[j]
upper_bounds = collect(keys(U_N))
p = length(yI)
hvs = [
u[k] == yN[k] ? 0.0 : prod(_project(u, k) .- _project(yI, k)) for
k in 1:p, u in upper_bounds
]
k_star, j_star = argmax(hvs).I
return k_star, upper_bounds[j_star]
end

function optimize_multiobjective!(
Expand All @@ -100,7 +105,6 @@ function optimize_multiobjective!(
warm_start_supported = true
end
solutions = Dict{Vector{Float64},Dict{MOI.VariableIndex,Float64}}()
YN = Vector{Float64}[]
variables = MOI.get(model.inner, MOI.ListOfVariableIndices())
n = MOI.output_dimension(model.f)
yI, yN = zeros(n), zeros(n)
Expand All @@ -114,7 +118,7 @@ function optimize_multiobjective!(
return status, nothing
end
_, Y = _compute_point(model, variables, f_i)
yI[i] = Y + 1
yI[i] = Y
model.ideal_point[i] = Y
MOI.set(model.inner, MOI.ObjectiveSense(), MOI.MAX_SENSE)
MOI.optimize!(model.inner)
Expand All @@ -124,7 +128,7 @@ function optimize_multiobjective!(
return status, nothing
end
_, Y = _compute_point(model, variables, f_i)
yN[i] = Y
yN[i] = Y + 1
end
MOI.set(model.inner, MOI.ObjectiveSense(), MOI.MIN_SENSE)
U_N = Dict{Vector{Float64},Vector{Vector{Vector{Float64}}}}()
Expand All @@ -136,7 +140,7 @@ function optimize_multiobjective!(
status = MOI.TIME_LIMIT
break
end
k, u = _select_search_zone(U_N, yI)
k, u = _select_search_zone(U_N, yI, yN)
MOI.set(
model.inner,
MOI.ObjectiveFunction{typeof(scalars[k])}(),
Expand Down
39 changes: 38 additions & 1 deletion test/algorithms/TambyVanderpooten.jl
Original file line number Diff line number Diff line change
Expand Up @@ -621,7 +621,44 @@ function test_vector_of_variables_objective()
MOI.set(model, MOI.ObjectiveFunction{typeof(f)}(), f)
MOI.add_constraint(model, sum(1.0 * xi for xi in x), MOI.GreaterThan(1.0))
MOI.optimize!(model)
MOI.get(model, MOI.TerminationStatus()) == MOI.OPTIMAL
@test MOI.get(model, MOI.TerminationStatus()) == MOI.OPTIMAL
return
end

function test_issue_105()
cost = [100.0, 120.0, 150.0, 110.0, 200.0, 170.0]
time = [8.0, 3.0, 4.0, 2.0, 5.0, 4.0]
capacity = [10.0, 8.0]
demand = [5.0, 8.0, 5.0]
m, n = 2, 3
model = MOI.instantiate(; with_bridge_type = Float64) do
return MOA.Optimizer(HiGHS.Optimizer)
end
MOI.set(model, MOA.Algorithm(), MOA.TambyVanderpooten())
MOI.set(model, MOI.Silent(), true)
x = MOI.add_variables(model, m * n)
MOI.add_constraint.(model, x, MOI.GreaterThan(0.0))
MOI.add_constraint.(model, x, MOI.Integer())
X = reshape(x, m, n)
for i in 1:m
f_i = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(1.0, X[i, :]), 0.0)
MOI.add_constraint(model, f_i, MOI.LessThan(capacity[i]))
end
for j in 1:n
f_j = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(1.0, X[:, j]), 0.0)
MOI.add_constraint(model, f_j, MOI.EqualTo(demand[j]))
end
f = MOI.Utilities.operate(
vcat,
Float64,
MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(cost, x), 0.0),
MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(time, x), 0.0),
MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(1.0, x), 0.0),
)
MOI.set(model, MOI.ObjectiveSense(), MOI.MIN_SENSE)
MOI.set(model, MOI.ObjectiveFunction{typeof(f)}(), f)
MOI.optimize!(model)
@test MOI.get(model, MOI.ResultCount()) == 6
return
end

Expand Down
Loading