Skip to content

jshyunbin/ConditionalStyleGAN-keras

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Conditional StyleGAN

CSGAN(Conditional StyleGAN) implementation with Keras. Used CelebA datasets(64 x 64 x 3) and 5 classes for training.

csgan-generated-images

Prerequisites

  • tensorflow-gpu: 1.14.0
  • Keras: 2.3.1
  • tensorboard: 1.14.0
  • h5py: 2.10.0
  • numpy: 1.18.1

How to use

You need to prepare your own dataset in the dataset/ directory.

python model.py --model=CSGAN --gpu=2 --name=csgan-test --load_model=3000

There are 8 flags for training/validating parameters.

Flags type default
load_model integer Iteration number of the model you wish to load. '-1' for training a new model -1
validate boolean Set to 'True' for validating a model and 'False' for training. False
glasses boolean When set 'True', generates 'glasses' validate images.(Only works when validate is 'True') False
male boolean When set 'True', generates 'male' validate images. (Only works when validate is 'True') False
model enum Select from ['CSGAN', 'ACGAN', 'CGAN']. CSGAN
gpu integer The gpu number for training. 0
name string The name of your model. Will be used for saving model and validate images. None
batch_size integer The batch size for training the model. 64

About

CSGAN(Conditional StyleGAN), ACGAN, cGAN implementation with Keras.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages