Skip to content

Basketlytics is an intelligent web platform for automatic analysis of basketball games from video. It uses YOLO pretrained models and computer vision algorithms to provide advanced statistics, rich visualizations and tactical analysis of the game

License

Notifications You must be signed in to change notification settings

josmarsua/Basketlytics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

86 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🏀 Basketlytics

Basketlytics es una plataforma web inteligente para el análisis automático de partidos de baloncesto a partir de vídeos. Utiliza modelos de detección y algoritmos de visión por computador para ofrecer estadísticas avanzadas, visualizaciones enriquecidas y un análisis táctico del juego.

Tactical and statistical analysis in professional basketball typically relies on proprietary tools and manual processes, which limit accessibility in amateur or semi-professional contexts. This project presents a fully automated solution for basketball game analysis based solely on video input, requiring no specialized sensors or equipment. The implemented system leverages computer vision and deep learning techniques to detect and track players, the ball, and referees; automatically assigns teams through color-based clustering; and projects spatial positions onto a virtual top-down court view using homography. Furthermore, it infers ball possession, detects key events such as shots and passes, and generates dynamic visualizations that are rendered within an interactive web application accessible via browser.

Keywords: computer vision, basketball, deep learning, YOLO, sports analytics, action detection.


🚀 Funcionalidades

  • 📹 Subida de vídeo desde el navegador
  • 🧠 Detección de objetos con modelos de aprendizaje profundo (YOLO)
  • 👕 Asignación automática de equipos mediante clustering K-Means
  • ⏱️ Estadísticas avanzadas de posesión
  • 🏀 Detección de eventos clave (tiros, pases)
  • 📐 Homografía y proyección a vista táctica utilizando homografía y transformación de perspectiva
  • 🎨 Generación de vídeo final anotado

📦 Requisitos

Instalación local (modo desarrollo)

  • Python v3.10 o superior
  • Node.js v18
  • Sistema operativo: Ubuntu/Debian 20.04 o superior / Windows 10 o superior
  • Recomendado: GPU compatible con CUDA 12.4

🧪 Instalación en local

# Clonar repositorio
git clone https://github.com/josmarsua/TFG
cd TFG

# Backend
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
python backend/app.py

# Frontend
cd frontend
npm install
npm run dev

🐳 Despliegue con Docker

Opción A: Máquina con GPU (CUDA 12.4) – Rama main

git checkout main
docker compose up --build -d

Opción B: Despliegue en AWS (solo CPU) – Rama aws

git checkout aws
docker compose up --build -d

📚 Recursos del proyecto

About

Basketlytics is an intelligent web platform for automatic analysis of basketball games from video. It uses YOLO pretrained models and computer vision algorithms to provide advanced statistics, rich visualizations and tactical analysis of the game

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published