Skip to content

An evolving audio processing pipeline designed to separate and enhance audio components using open-source tools. The project aims to provide a modular framework for working with raw audio files, enabling separation, refinement, and post-processing.

License

Notifications You must be signed in to change notification settings

joelmathewthomas/freqsplit

Repository files navigation

freqsplit

An evolving audio processing pipeline designed to separate and enhance audio components using open-source tools. The project aims to provide a modular framework for working with raw audio files, enabling separation, refinement, and post-processing.


🚀 Current Features

  • Audio Input Handling: Uses librosa for reading and handling audio files.
  • Preprocessing: Includes resampling, normalization, and trimming using librosa.
  • Audio Classification: Utilizes panns-interference model trained on Google's Audioset to classify audio content.
  • Source Separation: Implements Demucs for music source separation.
  • Noise Reduction: Enhances audio by removing background noise using DeepFilterNet.
  • Post-Processing: Uses librosa to save processed audio files.
  • Modular Architecture: Designed for easy extension and customization.

📁 Project Structure

freqsplit/
├── api/                # API implementation (django, redis, celery)
├── client/             # Client-side interactions (vite, react, typescript)
├── LICENSE             # License file
├── pyproject.toml      # Project metadata and dependencies
├── pytest.ini          # Pytest configuration
├── README.md           # Project documentation
├── requirements.txt    # Python dependencies
├── src/                # Core processing modules
│   ├── freqsplit/      # Main package directory
│   │   ├── __init__.py # Package initialization
│   │   ├── input/      # Audio input handling
│   │   ├── preprocessing/  # Normalization, resampling, trimming
│   │   ├── separation/     # Source separation with Demucs
│   │   ├── postprocessing/ # Post-processing and saving results
│   │   ├── refinement/     # Spectrogram-based enhancement
│   │   ├── spectrogram/     # Spectrogram generation and analysis
├── tests/              # Unit and integration tests
└── venv/               # Virtual environment (should be excluded from version control)

📝 Wiki

For detailed instructions on installing dependencies, setting up Python environments, and configuring the project, visit the Wiki.

🛡️ License

This project is licensed under the Apache License 2.0.

About

An evolving audio processing pipeline designed to separate and enhance audio components using open-source tools. The project aims to provide a modular framework for working with raw audio files, enabling separation, refinement, and post-processing.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •