Python3 version 3.6.1 or greater is REQUIRED
Our NNetOneSplit function is located at: https://github.com/jguzman-tech/sgd-neural-network/blob/master/main.py
These steps assume a linux system.
git clone https://github.com/jguzman-tech/sgd-neural-network.git
mkdir ./.venv
python3 -m venv ./.venv
. ./.venv/bin/activate
vim ~/.bashrc
alias act=". ./.venv/bin/activate"
You can replace act with any valid bash identifier you want.
source ~/.bashrc
act
This will be saved on all future shells sessions for your current user.
pip3 install -r ./requirements.txt
To see our help message execute: python3 main.py -h
prompt$ python3 main.py -h usage: main.py [-h] [--use-custom-ll] max_epochs step_size n_hidden_units seed Use the SGD algorithm on the spam.data set positional arguments: max_epochs The maximum number of epochs step_size The scaling factor used for adjusting weights n_hidden_units The number of hidden parameters in our hidden layer seed The seed used for our random number generator optional arguments: -h, --help show this help message and exit --use-custom-ll Set this flag if you want to calculate using the LL function we coded.We used the library version to prevent overflow.
python3 main.py 500 0.05 10 4
The resultant figure will be: epochs_500_step_0.05_units_10_seed_4_logistic_loss.png
As you can see the filename includes all of the arguments so you can easily identify them.