Skip to content

Rust multiprovider generative AI client (Ollama, OpenAi, Anthropic, Gemini, DeepSeek, xAI/Grok, Groq,Cohere, ...)

License

Apache-2.0, MIT licenses found

Licenses found

Apache-2.0
LICENSE-APACHE
MIT
LICENSE-MIT
Notifications You must be signed in to change notification settings

jeremychone/rust-genai

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

genai - Multi-AI Providers Library for Rust

Currently supports natively: OpenAI, Anthropic, Gemini, XAI/Grok, Ollama, Groq, DeepSeek (deepseek.com & Groq), Cohere (more to come)

Also, allow custom URL with ServiceTargetResolver (see examples/c06-target-resolver.rs)

Static Badge Static Badge


Provides a common and ergonomic single API to many generative AI providers, such as Anthropic, OpenAI, Gemini, xAI, Ollama, Groq, and more.

v0.3.0 - Released 2025-05-08

What's new:

  • Gemini Thinking Budget support ReasoningEffort::Budget(num)
  • Gemini-zero, -low, -medium, and -high suffixes that set the corresponding budget (0, 1k, 8k, 24k)
  • When set, ReasoningEffort::Low, ... will map to their corresponding budget 1k, 8k, 24k

API-CHANGES (minors) - ReasoningEffort has now and additional Budget(num) variant - ModelIden::with_name_or_clone has been deprecated for ModelInden::from_option_name(Option<String>)

Check CHANGELOG for more info

v0.2.0 - Released 2025-04-16

Here are some of the api change. Check CHANGELOG for more info

API-CHANGES

  • chat::MetaUsage has been renamed to chat::Usage
  • Usage.input_tokens to Usage.prompt_tokens
  • Usage.prompt_tokens to Usage.completion_tokens
  • ChatMessage now takes an additional property, options: MessageOptions with and optional cache_control (CacheControl::Ephemeral)
  • Now client.resolve_service_target(model) is ASYNC, so, client.resolve_service_target(model).await
  • Note: At this point, we still cannot AsyncFn... traits as its support is not complete in stable (as of rust 1.86), but Auth Resolver can be async now with some Pin/Box/Future type anotation.

Thanks

Usage examples

  • Check out AIPACK, which wraps this genai library into an agentic runtime to run, build, and share AI Agent Packs. See pro@coder for a simple example of how I use AI PACK/genai for production coding.

Note: Feel free to send me a short description and link to your application or library using genai.

Key Features

Examples | Thanks | Library Focus | Changelog | Provider Mapping: ChatOptions | Usage

Examples

examples/c00-readme.rs

//! Base examples demonstrating the core capabilities of genai

use genai::chat::printer::{print_chat_stream, PrintChatStreamOptions};
use genai::chat::{ChatMessage, ChatRequest};
use genai::Client;

const MODEL_OPENAI: &str = "gpt-4o-mini"; // o1-mini, gpt-4o-mini
const MODEL_ANTHROPIC: &str = "claude-3-haiku-20240307";
const MODEL_COHERE: &str = "command-light";
const MODEL_GEMINI: &str = "gemini-2.0-flash";
const MODEL_GROQ: &str = "llama3-8b-8192";
const MODEL_OLLAMA: &str = "gemma:2b"; // sh: `ollama pull gemma:2b`
const MODEL_XAI: &str = "grok-beta";
const MODEL_DEEPSEEK: &str = "deepseek-chat";

// NOTE: These are the default environment keys for each AI Adapter Type.
//       They can be customized; see `examples/c02-auth.rs`
const MODEL_AND_KEY_ENV_NAME_LIST: &[(&str, &str)] = &[
	// -- De/activate models/providers
	(MODEL_OPENAI, "OPENAI_API_KEY"),
	(MODEL_ANTHROPIC, "ANTHROPIC_API_KEY"),
	(MODEL_COHERE, "COHERE_API_KEY"),
	(MODEL_GEMINI, "GEMINI_API_KEY"),
	(MODEL_GROQ, "GROQ_API_KEY"),
	(MODEL_XAI, "XAI_API_KEY"),
	(MODEL_DEEPSEEK, "DEEPSEEK_API_KEY"),
	(MODEL_OLLAMA, ""),
];

// NOTE: Model to AdapterKind (AI Provider) type mapping rule
//  - starts_with "gpt"      -> OpenAI
//  - starts_with "claude"   -> Anthropic
//  - starts_with "command"  -> Cohere
//  - starts_with "gemini"   -> Gemini
//  - model in Groq models   -> Groq
//  - For anything else      -> Ollama
//
// This can be customized; see `examples/c03-mapper.rs`

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
	let question = "Why is the sky red?";

	let chat_req = ChatRequest::new(vec![
		// -- Messages (de/activate to see the differences)
		ChatMessage::system("Answer in one sentence"),
		ChatMessage::user(question),
	]);

	let client = Client::default();

	let print_options = PrintChatStreamOptions::from_print_events(false);

	for (model, env_name) in MODEL_AND_KEY_ENV_NAME_LIST {
		// Skip if the environment name is not set
		if !env_name.is_empty() && std::env::var(env_name).is_err() {
			println!("===== Skipping model: {model} (env var not set: {env_name})");
			continue;
		}

		let adapter_kind = client.resolve_service_target(model)?.model.adapter_kind;

		println!("\n===== MODEL: {model} ({adapter_kind}) =====");

		println!("\n--- Question:\n{question}");

		println!("\n--- Answer:");
		let chat_res = client.exec_chat(model, chat_req.clone(), None).await?;
		println!("{}", chat_res.content_text_as_str().unwrap_or("NO ANSWER"));

		println!("\n--- Answer: (streaming)");
		let chat_res = client.exec_chat_stream(model, chat_req.clone(), None).await?;
		print_chat_stream(chat_res, Some(&print_options)).await?;

		println!();
	}

	Ok(())
}

More Examples


Static Badge

Library Focus:

  • Focuses on standardizing chat completion APIs across major AI services.

  • Native implementation, meaning no per-service SDKs.

    • Reason: While there are some variations between all of the various APIs, they all follow the same pattern and high-level flow and constructs. Managing the differences at a lower layer is actually simpler and more cumulative across services than doing SDKs gymnastics.
  • Prioritizes ergonomics and commonality, with depth being secondary. (If you require a complete client API, consider using async-openai and ollama-rs; they are both excellent and easy to use.)

  • Initially, this library will mostly focus on text chat API (images, or even function calling in the first stage).

ChatOptions

  • (1) - OpenAI compatibles notes
    • Models: OpenAI, DeepSeek, Groq, Ollama, xAI
Property OpenAI Compatibles (*1) Anthropic Gemini generationConfig. Cohere
temperature temperature temperature temperature temperature
max_tokens max_tokens max_tokens (default 1024) maxOutputTokens max_tokens
top_p top_p top_p topP p

Usage

Property OpenAI Compatibles (1) Anthropic usage. Gemini usageMetadata. Cohere meta.tokens.
prompt_tokens prompt_tokens input_tokens (added) promptTokenCount (2) input_tokens
completion_tokens completion_tokens output_tokens (added) candidatesTokenCount (2) output_tokens
total_tokens total_tokens (computed) totalTokenCount (2) (computed)
prompt_tokens_details prompt_tokens_details cached/cache_creation N/A for now N/A for now
completion_tokens_details completion_tokens_details N/A for now N/A for now N/A for now
  • (1) - OpenAI compatibles notes

  • (2): Gemini tokens

    • Right now, with Gemini Stream API, it's not really clear if the usage for each event is cumulative or needs to be added. Currently, it appears to be cumulative (i.e., the last message has the total amount of input, output, and total tokens), so that will be the assumption. See possible tweet answer for more info.

Notes on Possible Direction

  • Will add more data on ChatResponse and ChatStream, especially metadata about usage.
  • Add vision/image support to chat messages and responses.
  • Add function calling support to chat messages and responses.
  • Add embed and embed_batch
  • Add the AWS Bedrock variants (e.g., Mistral, and Anthropic). Most of the work will be on "interesting" token signature scheme (without having to drag big SDKs, might be below feature).
  • Add the Google VertexAI variants.
  • (might) add the Azure OpenAI variant (not sure yet).

Links

About

Rust multiprovider generative AI client (Ollama, OpenAi, Anthropic, Gemini, DeepSeek, xAI/Grok, Groq,Cohere, ...)

Resources

License

Apache-2.0, MIT licenses found

Licenses found

Apache-2.0
LICENSE-APACHE
MIT
LICENSE-MIT

Stars

Watchers

Forks

Packages

No packages published

Languages