Skip to content

jaronimas-codes/house-price-regression

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🏡 House Price Regression

A machine learning project to predict housing prices using the Ames Housing dataset.
Built with Python, scikit-learn, XGBoost, and Streamlit for an interactive web UI.


📌 Project Overview

This project demonstrates a full ML workflow:

  • Data preprocessing (cleaning, feature engineering, log-transforms)
  • Exploratory Data Analysis (EDA) with compact visualizations
  • Feature selection (handling multicollinearity, ranking important features)
  • Model training & evaluation:
    • Linear Regression
    • Random Forest
    • XGBoost
  • Streamlit app for interactive predictions:
    • Train models directly in the app
    • Predict sale price from top-K features
    • Compact UI with sliders, toggles, and number inputs
    • Shows expected error range (±MAE)

📂 Repository Structure

hause-price-regression/
│
├── data/               # raw and processed datasets
├── artifacts/          # trained models (ignored in git)
├── scripts/            # training, prediction, transform logic
├── app.py              # Streamlit app entry point
├── train.py            # model training script
├── transform.py        # preprocessing and feature engineering
├── requirements.txt    # dependencies
└── README.md           # project description

⚡ Installation

  1. Clone the repo:

    git clone https://github.com/jaronimas-codes/hause-price-regression.git
    cd hause-price-regression
  2. Create a virtual environment:

    python -m venv venv
    source venv/bin/activate    # on Linux/Mac
    venv\Scripts\activate       # on Windows
  3. Install dependencies:

    pip install -r requirements.txt

🏃 Usage


### Launch Streamlit app

```bash
streamlit run app.py

Then open http://localhost:8501 in your browser and follow the workflow.


📊 Features in Streamlit App

  • 🎯 Top-K feature editing: adjust the most important features\
  • 🧮 Prefilled defaults: dataset medians (binary → checkbox, int → number input, float → number input)\
  • 📈 Prediction with uncertainty: shows predicted price and ±MAE range\
  • 🖥️ Compact UI: 4-column layout for efficient editing

🛠 Tech Stack

  • Python 3.11
  • Pandas, NumPy
  • scikit-learn
  • XGBoost
  • Streamlit
  • Matplotlib

About

House Prices Model Training, Testing, Using. Full ML Workflow.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages