Skip to content

itsmehere/locomani

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

locomani project

For pushing force visulization, add the following code to IsaacGym_Preview_4_Package/isaacgym/python/isaacgym/gymutil.py

class WireframeTriangleGeometry(LineGeometry):
    def __init__(self, xdim=0.5, ydim=0.5, pose=None, color=None):
        if color is None:
            color = (1, 0, 0)

        num_lines = 3*2

        x = 0.006 * xdim
        y = 0.006 * ydim

        verts = np.empty((num_lines, 2), gymapi.Vec3.dtype)

        verts[0][0] = (0, 0, 0)
        verts[0][1] = (0.1, -y, 0)
        verts[1][0] = (0, 0, 0)
        verts[1][1] = (-0.1, -y, 0)
        verts[2][0] = (0.1, -y, 0)
        verts[2][1] = (-0.1, -y, 0)
        
        verts[3][0] = (0, 0, 0)
        verts[3][1] = (-x, 0.1, 0)
        verts[4][0] = (0, 0, 0)
        verts[4][1] = (-x, -0.1, 0)
        verts[5][0] = (-x, 0.1, 0)
        verts[5][1] = (-x, -0.1, 0)
        
        # verts[0][0] = (0, 0, 0)
        # verts[0][1] = (-x, 0, 0)
        # verts[1][0] = (0, 0, 0)
        # verts[1][1] = (0, -y, 0)
    
        if pose is None:
            self.verts = verts
        else:
            self.verts = pose.transform_points(verts)

        colors = np.empty(num_lines, gymapi.Vec3.dtype)
        colors.fill(color)
        self._colors = colors

    def vertices(self):
        return self.verts

    def colors(self):
        return self._colors

a1wxv - grount truth vision env using sampled height map points a1wxd - depth image as the vision input, only for RMA student policy learning

python scripts/train_vision.pt --task a1wxv --headless for teacher policy python scripts/train_vision.pt --task a1wxd --headless for student policy, make sure in a1wxd.config, estimator = True, Load = 'teacher policy path', resume = True

Install realsen on Nvidia Jetson: https://lieuzhenghong.com/how_to_install_librealsense_on_the_jetson_nx/

reach policy is for arm only teacher_policy is IG policy for both arm and dog dog only is to only mimicing dog actions but the policy is trained for a dog with an arm prior is to mimicking dog actions for a raisim policy ig dog only is to mimicing dog action for a IG policy but the policy is only trained with a dog

About

Various environments for training quadrupeds in sim (checkout branches)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •