Skip to content

istvanmegyeri/pytorch_model_training

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Training models in CIFAR datasets using pytorch

Source code were reused from here.

Prerequisites

  • conda create -n torchenv python=3.6
  • conda activate torchenv
  • conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch

Training

# Start training with: 
python main.py

# You can manually resume the training with: 
python main.py --resume --lr=0.01

# You can switch between models by --netname: 
python main.py --resume --lr=0.01 --netname {preactresnet18|vgg19|resnet18|lenet}

Accuracy on CIFAR10

Model Acc.
VGG16 92.64%
ResNet18 93.02%
ResNet50 93.62%
ResNet101 93.75%
RegNetX_200MF 94.24%
RegNetY_400MF 94.29%
MobileNetV2 94.43%
ResNeXt29(32x4d) 94.73%
ResNeXt29(2x64d) 94.82%
SimpleDLA 94.89%
DenseNet121 95.04%
PreActResNet18 95.11%
DPN92 95.16%
DLA 95.47%

About

pytorch_model_training

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages