You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+6Lines changed: 6 additions & 0 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -668,6 +668,12 @@ We also build on top of many great packages. Please check them out!
668
668
-[Differentially Private Gradient Boosting on Linear Learners for Tabular Data Analysis](https://assets.amazon.science/fa/3a/a62ba73f4bbda1d880b678c39193/differentially-private-gradient-boosting-on-linear-learners-for-tabular-data-analysis.pdf)
669
669
-[Differentially private and explainable boosting machine with enhanced utility](https://www.sciencedirect.com/science/article/abs/pii/S0925231224011950)
670
670
-[Concrete compressive strength prediction using an explainable boosting machine model](https://www.sciencedirect.com/science/article/pii/S2214509523000244/pdfft?md5=171c275b6bcae8897cef03d931e908e2&pid=1-s2.0-S2214509523000244-main.pdf)
671
+
-[Assessment of pulse wave velocity through weighted visibility graph metrics from photoplethysmographic signals](https://www.nature.com/articles/s41598-025-16598-x?utm_source=rct_congratemailt&utm_medium=email&utm_campaign=oa_20250826&utm_content=10.1038/s41598-025-16598-x)
672
+
-[When Interpretability Meets Generalization: Delta-GAM for Robust Extrapolation in Out-of-Distribution Settings](https://dl.acm.org/doi/pdf/10.1145/3711896.3737180)
673
+
-[Interpretable Prediction of Myocardial Infarction Using Explainable Boosting Machines: A Biomarker-Based Machine Learning Approach](https://www.mdpi.com/2075-4418/15/17/2219)
674
+
-[Using Explainable Machine Learning to Analyse Expert-Guided Automatic Triage Systems](https://studenttheses.uu.nl/bitstream/handle/20.500.12932/49903/Thomas_vd_Brink_MSc_thesis_2_0-7.pdf?sequence=1&isAllowed=y)
675
+
-[Essays on Developing Artificial Intelligence Solutions for Patient centered Healthcare Delivery](https://repositories.lib.utexas.edu/server/api/core/bitstreams/35a2df35-efb6-4a2a-951e-c842814afa9d/content)
676
+
-[Mitigating Cognitive Biases in Predicting Student Dropout: Global and Local Explainability with Explainable Boosting Machine](https://www.proquest.com/openview/e4e37e8088593f2db0a9d0e346538ad6/1?pq-origsite=gscholar&cbl=6474026)
671
677
- [Proxy endpoints - bridging clinical trials and real world data](https://pdf.sciencedirectassets.com/272371/1-s2.0-S1532046424X00064/1-s2.0-S1532046424001412/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEIn%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJGMEQCIBYgAN6aOVrDnvQ1932tPndUyJ0Dm1nHdMVLiekPVduQAiAzbYe7W%2Bd6Dj8ee42ZeZnQxJwEjEjuGdiUEPx0a2G43SqyBQgSEAUaDDA1OTAwMzU0Njg2NSIMyMkCUNFeDTCUCppMKo8FiVShykb8phR%2F8aWUGE9gfnE5y7X3Jj1ZA2CVldH13T67s536bdTBhjIMF18rV0YP9iMi6B5aGr%2F286ovIJl332fxZ6iQNBIOPTm8kXQDUqvZbknYldiZqUPs69kuC%2FcKnJd1BWnv2SEZwbRuX94rWnRDPDaSoJx%2FVS6o4qsbFjp9%2BMYZr%2BvJzWHKrXAI4W%2Fh9%2BsIa0yvlac3IMWzAeD23HzDNmF0nqjJ6BSZzmDNW4HRIGBTrTUTO40TzQzhaOY7wyGA0Zv8SpWIULI%2FrY8z8EOX%2FU6OhqgyIMKv%2FSx3rUpMi5CrC1WcpnL97j%2FDAijNi4vMfG1b%2BBQIFRu2EmUky76k4w3FYxkCpYj4n4mk9H%2B%2Bc9C%2BdjKjUiayi%2FisIZUD7ISNhQ9oov0kXI1IVTCGKKQC9jqHOvdiA8YbVuMdEzy1Lkx%2B1kiEo79qvSlpTe2BtWAOm2Iequ01XoaMv%2FQb4ajhWKKSkTafzDAxc58aayP1YH49UzQ68Me7ecdHpx3JUHyYnxJGQ82wRpPkfZJA5wCmOUVI%2FBLuwFJyczG0LpALN5IpIqZz%2B8DvDR0xjRoN49dVwhrTSQ9BesvXbi2LKVm1ptacaaKqyx0PwLjQYKOd%2BPI3zCvRxEiM3IKSNFRLsUTyPNEE4E8pMFNxfyEX59yvTQrHwM62P7hvxHs%2BY6CxUGZTKBQwDAgxttJmiO%2BvjCRbTBXZg1WrQdXCkxntBXb15Mnqxo4lyPzUUkLdLAFK%2BLSwzBIcvSw2qG81Y8qhWmBgBT9vfAoSrjxsILFrB3nnz7u9XNNpRxb5Z9NuNG92%2Fpd%2F%2F5VespMY8Q0iwsNqazZ4M4H8UB34JgtrUEY27WrIsDWzLR%2FAYAxU%2BZHrFzCrsae5BjqyASqDBsNqjEkho%2FbuQDT%2F0vGx%2BgAqrksvVX0GrzNgvqnuPyvw6%2F%2B40ZJP5EA4axfltOYb2tNjd18Ngy2A3cd6J57v1G7wYyuSFIUfHGN5LA8BXK7p0x1mNcwN3pKHtAf260gjpsWMG7anvpK%2F3YupTz498C1lAmurJD%2BLN41lq05wBr403cchE41yzqAKHVKVpNq9s6oGHJmq0KJRvk%2FfjZr8oLhod5gtrwLKvLGqULf50L0%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20241105T092058Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYUKUJCDYI%2F20241105%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=15f8e40964e2c750ae15e43aa8e7f7c76eef6a76b792e41434d14bed42b31432&hash=d4a3e49b29443e5eea9e5a44c0dc11b3f30b21addbe6d6d20d523c68db23cd23&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S1532046424001412&tid=spdf-4fbabbd8-becb-4526-98d3-c7517914e457&sid=8ab2a095350fc74edc4b8765ecd8c0260edcgxrqa&type=client&tsoh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&ua=0f165f0b050207505b0151&rr=8ddbc55a0d60a380&cc=us)
672
678
-[Machine Learning Model Reveals Determinators for Admission to Acute Mental Health Wards From Emergency Department Presentations](https://onlinelibrary.wiley.com/doi/epdf/10.1111/inm.13402)
673
679
- [Interpretable Machine Learning Models for Predicting Perioperative Myocardial Injury in Non-Cardiac Surgery](https://download.ssrn.com/lancet/3c1e4bc6-9a96-41fe-b60d-4f8c370f9c36-meca.pdf?response-content-disposition=inline&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEFEaCXVzLWVhc3QtMSJGMEQCIHigbeDDkdVUkffH2H2RZYNuuzMq%2FYlkF%2FibCUOmRXZjAiBJ4I7%2BbMuVoMl4APz5MJ9nmLt%2B73WKABFtE2NSd4azJSrGBQiJ%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAQaDDMwODQ3NTMwMTI1NyIMIVo5lL%2F4nJco3bcLKpoF6PnBkOsbtAPeb6MtFrf4OmMuVjZzVV1Qc6zzBgUTuvijpQFfxzIktRbNW5mUP4fi4rZmjJqhQAjjheSkE7HupPdoBsG3E%2Fii8HKrOXOWErX0qO%2Bwoy%2FFDWS8MdwihFT6EdpwF2yXXAGNz8Vvm%2BgCD772tijc8fXl9DjVtJfr%2BSAPvP3LiG2Pb8UV038Nvko2RbXdyF9rtOmQt1FU738wZ20X3PoLaxzplsAuClhl%2B9zzB5jpC%2BfaW%2BouvPfaZ33McYgKwjTsVv9ox9dBmPgxKbfC%2F5VcF1AAppVeWbGHOj%2BaFIRMocNSaz2IFv06tAqOk7UlIp3p9u4VP8dZ77hf4NI94UEZYojH%2FL%2F6Y23RPj7KtFPjCrHiRbdjaO%2Fl80SoTl21rd41HMBtH%2F%2B%2Fsc5Hgphz9QfI69n03iQ0D6vx30p0knKdwnghrJYYOyW4yCkyztwyYrcOsTOZOcWdvnoGFe6bvIi4DxPrEnf%2FyKDH5iWNeBx5ZAFxzi1ibP8NAXY8c%2B6rr%2Bpe8VGG4shAkI1JRae%2BakvlbBQYbj8vAuVUAGVqM1u8lo0%2FeGfW89KrlojE1VLBUidGrIZSFjCLJP0cG%2FDUbOs7atV1X1H8ny4F5wIw9g0h4lPjj%2FB4vjYPhw%2BOcZYSWiwn1dI0UGNJTyD%2FRtVjuGHT19MOIoqpjSXBymTmOVFjYPSrBYKUUYVfbmzTlrODFwL3oxQwA5eJvAUs0XjXD1rqHQ%2FfISGck5RmCrNlMwpirxgKarRIFwDbzVX8Z7EjTdvIWNAoJJDhwNQCfkdpo12QoINi8yZuiEzdVwMka2sRfIDSyKcn3z2%2B2T6KLgtVf8Q%2BhecxbHgIy8dvcf8secsrh5SDlTia5np%2BNDGLsStb54VQ3oOXMJbE0cQGOrIBoW0oHhskfPiIYI34pCU9cirMG0P9uUmNXP0aJczLXK0mPViF2dAlTOu2uIfl6bFLewWrg7ESDste8Gx6Qci8o4d6rK7ROJv1UpXh9xPRfOx3dksHGKkcW%2FlE4xxEtQ2ctZOSAycoEpPplq4tLgW6BIuDBVR2VxIjY1o5oN7loo13exU4hkJpketet9gRQHdzFYHJYWTzpXDys2TBAp587w2ueQEbnh6zC8GJuv1DxH4OVw%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20250807T093300Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAUPUUPRWEUFEGH3IY%2F20250807%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=1ebccc377c0fbab66bb37e6aac8ab4b50cb82328871b5e8d2b651370d49a58e6&abstractId=5379891)
0 commit comments