@@ -1177,9 +1177,9 @@ def fit(self, X, y, sample_weight=None, bags=None, init_score=None):
11771177
11781178 results = parallel (
11791179 delayed (booster )(
1180- shm_name ,
1181- idx ,
1182- callback ,
1180+ shm_name = shm_name ,
1181+ bag_idx = idx ,
1182+ callback = callback ,
11831183 dataset = (
11841184 shared .name if shared .name is not None else shared .dataset
11851185 ),
@@ -1188,25 +1188,29 @@ def fit(self, X, y, sample_weight=None, bags=None, init_score=None):
11881188 "intercept_learning_rate"
11891189 ),
11901190 intercept = bagged_intercept [idx ],
1191- bag = ( bag := internal_bags [idx ]) ,
1191+ bag = internal_bags [idx ],
11921192 # TODO: instead of making these copies we should
11931193 # put init_score into the native shared dataframe
11941194 init_scores = (
11951195 init_score
11961196 if (
11971197 init_score is None
1198- or bag is None
1199- or np .count_nonzero (bag ) == len (bag )
1198+ or internal_bags [idx ] is None
1199+ or np .count_nonzero (internal_bags [idx ])
1200+ == len (internal_bags [idx ])
12001201 )
1201- else init_score [bag != 0 ]
1202+ else init_score [internal_bags [ idx ] != 0 ]
12021203 ),
12031204 term_features = term_features ,
12041205 smoothing_rounds = smoothing_rounds ,
12051206 # if there are no validation samples, turn off early stopping
12061207 # because the validation metric cannot improve each round
12071208 early_stopping_rounds = (
12081209 early_stopping_rounds
1209- if (bag is not None and (bag < 0 ).any ())
1210+ if (
1211+ internal_bags [idx ] is not None
1212+ and (internal_bags [idx ] < 0 ).any ()
1213+ )
12101214 else 0
12111215 ),
12121216 rng = rngs [idx ],
@@ -1287,8 +1291,8 @@ def fit(self, X, y, sample_weight=None, bags=None, init_score=None):
12871291 bagged_ranked_interaction = parallel (
12881292 # TODO: the combinations below should be selected from the non-excluded features
12891293 delayed (rank_interactions )(
1290- shm_name ,
1291- idx ,
1294+ shm_name = shm_name ,
1295+ bag_idx = idx ,
12921296 dataset = (
12931297 shared .name
12941298 if shared .name is not None
@@ -1412,9 +1416,9 @@ def fit(self, X, y, sample_weight=None, bags=None, init_score=None):
14121416
14131417 results = parallel (
14141418 delayed (booster )(
1415- shm_name ,
1416- idx ,
1417- callback ,
1419+ shm_name = shm_name ,
1420+ bag_idx = idx ,
1421+ callback = callback ,
14181422 dataset = (
14191423 shared .name
14201424 if shared .name is not None
@@ -1528,9 +1532,9 @@ def fit(self, X, y, sample_weight=None, bags=None, init_score=None):
15281532 bagged_intercept += correction
15291533 else :
15301534 exception , intercept_change , _ , _ , rng = booster (
1531- None ,
1532- 0 ,
1533- None ,
1535+ shm_name = None ,
1536+ bag_idx = 0 ,
1537+ callback = None ,
15341538 dataset = shared .dataset ,
15351539 intercept_rounds = develop .get_option ("n_intercept_rounds_final" ),
15361540 intercept_learning_rate = develop .get_option (
@@ -1541,16 +1545,9 @@ def fit(self, X, y, sample_weight=None, bags=None, init_score=None):
15411545 init_scores = scores ,
15421546 term_features = [],
15431547 n_inner_bags = 0 , # overwrite
1544- min_samples_leaf = 0 , # overwrite
1545- min_hessian = 0.0 , # overwrite
15461548 reg_alpha = 0.0 , # overwrite
15471549 reg_lambda = 0.0 , # overwrite
1548- max_delta_step = 0.0 , # overwrite
1549- gain_scale = 1.0 , # overwrite
1550- max_leaves = 1 , # overwrite
1551- monotone_constraints = None , # overwrite
15521550 smoothing_rounds = 0 ,
1553- max_rounds = 0 , # overwrite
15541551 early_stopping_rounds = 0 ,
15551552 rng = rng ,
15561553 acceleration = Native .AccelerationFlags_NONE , # overwrite
0 commit comments