Gentle project (using Kaldi) able to leverage nvidia/cuda GPU.
Similar to:
but leveraging an nvidia/kaldi GPU optimized docker image.
-
https://docs.nvidia.com/deeplearning/frameworks/kaldi-release-notes/rel_21-02.html#rel_21-02
-
https://medium.com/voicetube/build-gentle-w-cuda-enabled-kaldi-cb9eac86afc3
docker build -t gentle-kaldi-gpu-captions-aligner .
docker run --rm -it --gpus all gentle-kaldi-gpu-captions-aligner
# test, inside running container:
python3 align.py examples/data/lucier.mp3 examples/data/lucier.txt
Tesla T4, Turing architecture exclusive access to GPU (nothing else running)
3min video, 280 words (1676 characters)
RAM usage: RES: 30GB VIRT: 360GB
barely engages GPU, only at the beginning
nvidia-smi dmon -s uc
# gpu sm mem enc dec mclk pclk
# Idx % % % % MHz MHz
0 7 1 0 0 5000 585
0 0 0 0 0 5000 585
0 0 0 0 0 405 300
0 1 0 0 0 5000 585
0 7 1 0 0 5000 585
0 1 0 0 0 5000 585
0 1 0 0 0 5000 585
0 2 0 0 0 5000 585
0 2 0 0 0 5000 585
0 10 0 0 0 5000 585
0 30 1 0 0 5000 585
0 42 1 0 0 5000 690
0 35 2 0 0 5000 1275
0 46 4 0 0 5000 1590
0 32 3 0 0 5000 1590
0 26 2 0 0 5000 1380
0 31 2 0 0 5000 1140
0 3 0 0 0 5000 735
0 0 0 0 0 5000 585
0 0 0 0 0 5000 585
...
0 0 0 0 0 5000 585
...
0 0 0 0 0 405 300
runs for 8m11s wallclock, crashes out (I believe during the m3
step)
RES: 12GB VIRT: 114GB
runs for 30s wallclock