Skip to content

feature: denom addition to estimate_proportions() #1404

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 9 commits into from
Mar 11, 2025

Conversation

Melkiades
Copy link
Contributor

Copy link
Contributor

github-actions bot commented Mar 6, 2025

Unit Tests Summary

    1 files     85 suites   1m 14s ⏱️
  880 tests   871 ✅   9 💤 0 ❌
1 913 runs  1 214 ✅ 699 💤 0 ❌

Results for commit 855bf54.

♻️ This comment has been updated with latest results.

Copy link
Contributor

github-actions bot commented Mar 6, 2025

Unit Test Performance Difference

Additional test case details
Test Suite $Status$ Time on main $±Time$ Test Case
estimate_proportion 👶 $+0.09$ _estimate_proportion_works_with_different_denominators

Results for commit ae56637

♻️ This comment has been updated with latest results.

Copy link
Contributor

github-actions bot commented Mar 6, 2025

badge

Code Coverage Summary

Filename                                   Stmts    Miss  Cover    Missing
---------------------------------------  -------  ------  -------  ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
R/abnormal_by_baseline.R                     101       3  97.03%   242, 244-245
R/abnormal_by_marked.R                        88       8  90.91%   94-98, 281, 283-284
R/abnormal_by_worst_grade.R                   94       3  96.81%   215, 217-218
R/abnormal_lab_worsen_by_baseline.R          159      10  93.71%   205-208, 213, 215-216, 459-461
R/abnormal.R                                  78       2  97.44%   222, 224
R/analyze_variables.R                        287       5  98.26%   587-590, 778
R/analyze_vars_in_cols.R                     178      14  92.13%   178, 221, 235-236, 238, 246-254
R/bland_altman.R                              92       1  98.91%   46
R/combination_function.R                       9       0  100.00%
R/compare_variables.R                         35       0  100.00%
R/control_incidence_rate.R                    10       0  100.00%
R/control_logistic.R                           7       0  100.00%
R/control_step.R                              23       1  95.65%   58
R/control_survival.R                          15       0  100.00%
R/count_cumulative.R                         115       4  96.52%   74, 270-271, 273
R/count_missed_doses.R                        89       4  95.51%   206-209
R/count_occurrences_by_grade.R               169       8  95.27%   178, 386, 388, 465, 467, 469, 473-474
R/count_occurrences.R                        137      10  92.70%   119, 262-264, 330-332, 334, 338-339
R/count_patients_events_in_cols.R             67       1  98.51%   60
R/count_patients_with_event.R                 73       2  97.26%   220, 223
R/count_patients_with_flags.R                 93       2  97.85%   234, 236
R/count_values.R                              61       2  96.72%   193, 196
R/cox_regression_inter.R                     154       0  100.00%
R/cox_regression.R                           161       0  100.00%
R/coxph.R                                    167       7  95.81%   191-195, 238, 253, 261, 267-268
R/d_pkparam.R                                406       0  100.00%
R/decorate_grob.R                            113       0  100.00%
R/desctools_binom_diff.R                     621      64  89.69%   53, 88-89, 125-126, 129, 199, 223-232, 264, 266, 286, 290, 294, 298, 353, 356, 359, 362, 422, 430, 439, 444-447, 454, 457, 466, 469, 516-517, 519-520, 522-523, 525-526, 593, 604-616, 620, 663, 676, 680
R/df_explicit_na.R                            30       0  100.00%
R/estimate_multinomial_rsp.R                  86       4  95.35%   65, 212, 214-215
R/estimate_proportion.R                      240       7  97.08%   88, 99, 255, 257-258, 389, 553
R/fit_rsp_step.R                              36       0  100.00%
R/fit_survival_step.R                         36       0  100.00%
R/formatting_functions.R                     183       2  98.91%   141, 276
R/g_forest.R                                 585      60  89.74%   240, 252-255, 260-261, 275, 277, 287-290, 335-338, 345, 414, 501, 514, 518-519, 524-525, 538, 554, 601, 630, 705, 714, 720, 739, 794-814, 817, 828, 847, 902, 905, 1040-1045
R/g_ipp.R                                    133       0  100.00%
R/g_km.R                                     350      57  83.71%   285-288, 307-309, 363-366, 400, 428, 432-475, 482-486
R/g_lineplot.R                               260      22  91.54%   204, 378-385, 424-434, 543, 551
R/g_step.R                                    68       1  98.53%   108
R/g_waterfall.R                               47       0  100.00%
R/h_adsl_adlb_merge_using_worst_flag.R        73       0  100.00%
R/h_biomarkers_subgroups.R                    91      23  74.73%   40-42, 84-103
R/h_cox_regression.R                         110       0  100.00%
R/h_incidence_rate.R                          45       0  100.00%
R/h_km.R                                     509      41  91.94%   137, 189-194, 287, 378, 380-381, 392-394, 413, 420-421, 423-425, 433-435, 460, 465-468, 651-654, 1108-1119
R/h_logistic_regression.R                    468       3  99.36%   203-204, 273
R/h_map_for_count_abnormal.R                  54       0  100.00%
R/h_pkparam_sort.R                            15       0  100.00%
R/h_response_biomarkers_subgroups.R           77      12  84.42%   50-55, 107-112
R/h_response_subgroups.R                     178      18  89.89%   257-270, 329-334
R/h_stack_by_baskets.R                        64       1  98.44%   89
R/h_step.R                                   180       0  100.00%
R/h_survival_biomarkers_subgroups.R           73       6  91.78%   111-116
R/h_survival_duration_subgroups.R            207      18  91.30%   259-271, 336-341
R/imputation_rule.R                           17       0  100.00%
R/incidence_rate.R                           103       7  93.20%   68-73, 242
R/logistic_regression.R                      102       0  100.00%
R/missing_data.R                              21       3  85.71%   32, 66, 76
R/odds_ratio.R                               157       4  97.45%   270-273
R/prop_diff_test.R                           144       2  98.61%   230, 232
R/prop_diff.R                                318      17  94.65%   71-74, 106, 299, 301, 373-380, 523, 688
R/prune_occurrences.R                         57       0  100.00%
R/response_biomarkers_subgroups.R            124      10  91.94%   88-91, 270-275
R/response_subgroups.R                       247      16  93.52%   100-105, 271-275, 280, 282-283, 310-311
R/riskdiff.R                                  65       4  93.85%   94-97
R/rtables_access.R                            38       0  100.00%
R/score_occurrences.R                         20       1  95.00%   124
R/split_cols_by_groups.R                      49       0  100.00%
R/stat.R                                      59       0  100.00%
R/summarize_ancova.R                         142       2  98.59%   316-317
R/summarize_change.R                          72       3  95.83%   175, 177-178
R/summarize_colvars.R                         13       1  92.31%   75
R/summarize_coxreg.R                         172       0  100.00%
R/summarize_glm_count.R                      269      10  96.28%   129-130, 202-203, 459-463, 596
R/summarize_num_patients.R                   121      10  91.74%   122-124, 244, 248, 252-253, 337-338, 340
R/summarize_patients_exposure_in_cols.R      155       7  95.48%   58, 232-233, 237, 357-358, 362
R/survival_biomarkers_subgroups.R            136      10  92.65%   117-122, 228-231
R/survival_coxph_pairwise.R                  124       5  95.97%   52-53, 248, 250-251
R/survival_duration_subgroups.R              245      15  93.88%   124-129, 268-273, 286, 288-289
R/survival_time.R                            120       1  99.17%   251
R/survival_timepoint.R                       153       2  98.69%   302, 304
R/utils_checkmate.R                           68       0  100.00%
R/utils_default_stats_formats_labels.R       194       0  100.00%
R/utils_factor.R                              87       1  98.85%   99
R/utils_ggplot.R                             110       0  100.00%
R/utils_grid.R                               126       5  96.03%   164, 279-286
R/utils_rtables.R                            125       9  92.80%   39, 46, 405-406, 528-532
R/utils_split_funs.R                          52       2  96.15%   82, 94
R/utils.R                                    141       7  95.04%   118, 121, 124, 128, 137-138, 332
TOTAL                                      11946     580  95.14%

Diff against main

Filename                   Stmts    Miss  Cover
-----------------------  -------  ------  -------
R/estimate_proportion.R      +11       0  +0.14%
TOTAL                        +11       0  +0.00%

Results for commit: 6313b0f

Minimum allowed coverage is 80%

♻️ This comment has been updated with latest results

Copy link
Contributor

@edelarua edelarua left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is great!!! I just have a couple of documentation suggestions :)

Signed-off-by: Emily de la Rua <emily.de_la_rua@contractors.roche.com>
@edelarua edelarua self-assigned this Mar 10, 2025
@shajoezhu
Copy link
Contributor

shajoezhu and others added 2 commits March 11, 2025 13:28
Co-authored-by: Emily de la Rua <emily.de_la_rua@contractors.roche.com>
Signed-off-by: Joe Zhu <sha.joe.zhu@gmail.com>
Co-authored-by: Emily de la Rua <emily.de_la_rua@contractors.roche.com>
Signed-off-by: Joe Zhu <sha.joe.zhu@gmail.com>
@shajoezhu shajoezhu enabled auto-merge (squash) March 11, 2025 05:29
@shajoezhu
Copy link
Contributor

@shajoezhu shajoezhu merged commit e3b181a into main Mar 11, 2025
28 checks passed
@shajoezhu shajoezhu deleted the 1402_add_denom_estimate_proportions@main branch March 11, 2025 05:52
@github-actions github-actions bot locked and limited conversation to collaborators Mar 11, 2025
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants