Skip to content

imgremlin/sem-gnn

Repository files navigation

Semantic Change Detection with Graph Neural Networks

Codebase for CSC2611H (Computational Models of Semantic Change) Final Project

Python environment setup with Conda

conda create -n semgnn python=3.9
conda activate semgnn

conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=10.2 -c pytorch
conda install pyg -c pyg==2.2.0

conda install -c anaconda numpy==1.23.3
conda install -c anaconda pandas==1.4.3
conda install -c anaconda scipy==1.9.3
conda install -c anaconda scikit-learn==1.1.3

conda install -c conda-forge pyarrow==8.0.0
conda install -c conda-forge tqdm==4.64.1

pip install transformers==4.24.0

Running SemGNN

conda activate semgnn

# Running preprocessing for each corpus
python3 preprocessing.py --file_id 1
python3 preprocessing.py --file_id 2

# Model training for each corpus
python3 train_eval.py --file_id 1
python3 train_eval.py --file_id 2

# Post-processing + results
python3 post_processing.py

Notes

  • Competetition link
  • Files located in data/init/ can be downloaded here
  • train_eval_const_feats.py can be ran insted train_eval.py. The model uses ones as node features instead of the word embeddings receive from the transformer

About

Code for paper "Semantic Change Detection with Graph Neural Networks"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages