A comprehensive cybersecurity solution that leverages artificial intelligence to detect and mitigate real-time security threats through network traffic and system log analysis.
-
Frontend (React + TypeScript)
- Modern Material-UI dashboard
- Real-time threat visualization
- Responsive design for all devices
- JWT-based authentication
-
AI Service (Python + FastAPI)
- TensorFlow-based threat detection
- Real-time URL and domain analysis
- SSL certificate validation
- Security headers inspection
-
DevOps Infrastructure
- Containerization with Docker
- Kubernetes orchestration
- GitHub Actions CI/CD pipeline
- Infrastructure as Code with Terraform
- Configuration management with Ansible
-
Monitoring Stack
- Prometheus metrics collection
- Grafana dashboards
- Kubernetes health monitoring
- Application performance metrics
.
├── Frontend/ # React frontend application
│ ├── src/ # Source code
│ ├── Dockerfile # Frontend container configuration
│ └── package.json # Dependencies and scripts
├── ai-service/ # Python AI service
│ ├── app.py # FastAPI application
│ ├── web_analyzer.py # Threat detection logic
│ ├── Dockerfile # AI service container configuration
│ └── requirements.txt # Python dependencies
├── k8s/ # Kubernetes manifests
│ ├── frontend-deployment.yaml
│ └── ai-service-deployment.yaml
├── terraform/ # Infrastructure as Code
│ └── main.tf # Terraform configuration
├── monitoring/ # Monitoring configuration
│ └── prometheus/ # Prometheus setup
├── ansible/ # Configuration management
│ └── site.yml # Ansible playbook
└── .github/
└── workflows/ # GitHub Actions CI/CD
- Docker Desktop with Kubernetes enabled
- Terraform >= 1.0.0
- Ansible >= 2.9
- Node.js >= 18.x
- Python >= 3.9
- AWS CLI configured (for cloud deployment)
-
Local Development
# Frontend cd Frontend npm install npm run dev # AI Service cd ai-service python -m venv venv source venv/bin/activate # or .\venv\Scripts\activate on Windows pip install -r requirements.txt uvicorn app:app --reload
-
Docker Deployment
# Build images docker build -t cybersecurity-frontend Frontend/ docker build -t cybersecurity-ai ai-service/ # Run containers docker-compose up -d
-
Kubernetes Deployment
# Apply Kubernetes manifests kubectl apply -f k8s/ # Check deployment status kubectl get pods -n cybersecurity
-
Infrastructure Deployment
# Initialize and apply Terraform cd terraform terraform init terraform apply # Run Ansible playbook cd ../ansible ansible-playbook site.yml
- Prometheus: Access metrics at
http://localhost:9090
- Grafana: Access dashboards at
http://localhost:3000
- Default credentials: admin/admin
- Pre-configured dashboards for system and application metrics
The GitHub Actions pipeline automatically:
- Runs tests for both frontend and AI service
- Builds and pushes Docker images
- Deploys to Kubernetes cluster
- Updates infrastructure using Terraform
- All sensitive data should be stored in Kubernetes secrets
- Update the
.env
files with proper credentials - Configure proper CORS settings in production
- Enable network policies in Kubernetes
- Regular security audits recommended
- Fork the repository
- Create your feature branch
- Commit your changes
- Push to the branch
- Create a Pull Request
MIT License - See LICENSE file for details