Hyparquet Writer is a JavaScript library for writing Apache Parquet files. It is designed to be lightweight, fast and store data very efficiently. It is a companion to the hyparquet library, which is a JavaScript library for reading parquet files.
To write a parquet file to an ArrayBuffer use parquetWriteBuffer with argument columnData. Each column in columnData should contain:
name: the column namedata: an array of same-type valuestype: the parquet schema type (optional)
import { parquetWriteBuffer } from 'hyparquet-writer'
const arrayBuffer = parquetWriteBuffer({
columnData: [
{ name: 'name', data: ['Alice', 'Bob', 'Charlie'], type: 'STRING' },
{ name: 'age', data: [25, 30, 35], type: 'INT32' },
],
})Note: if type is not provided, the type will be guessed from the data. The supported BasicType are a superset of the parquet primitive types:
| Basic Type | Equivalent Schema Element |
|---|---|
BOOLEAN |
{ type: 'BOOLEAN' } |
INT32 |
{ type: 'INT32' } |
INT64 |
{ type: 'INT64' } |
FLOAT |
{ type: 'FLOAT' } |
DOUBLE |
{ type: 'DOUBLE' } |
BYTE_ARRAY |
{ type: 'BYTE_ARRAY' } |
STRING |
{ type: 'BYTE_ARRAY', converted_type: 'UTF8' } |
JSON |
{ type: 'BYTE_ARRAY', converted_type: 'JSON' } |
TIMESTAMP |
{ type: 'INT64', converted_type: 'TIMESTAMP_MILLIS' } |
UUID |
{ type: 'FIXED_LEN_BYTE_ARRAY', type_length: 16, logical_type: { type: 'UUID' } } |
FLOAT16 |
{ type: 'FIXED_LEN_BYTE_ARRAY', type_length: 2, logical_type: { type: 'FLOAT16' } } |
GEOMETRY |
{ type: 'BYTE_ARRAY', logical_type: { type: 'GEOMETRY' } } |
GEOGRAPHY |
{ type: 'BYTE_ARRAY', logical_type: { type: 'GEOGRAPHY' } } |
More types are supported but require defining the schema explicitly. See the advanced usage section for more details.
To write a local parquet file in node.js use parquetWriteFile with arguments filename and columnData:
const { parquetWriteFile } = await import('hyparquet-writer')
parquetWriteFile({
filename: 'example.parquet',
columnData: [
{ name: 'name', data: ['Alice', 'Bob', 'Charlie'], type: 'STRING' },
{ name: 'age', data: [25, 30, 35], type: 'INT32' },
],
})Note: hyparquet-writer is published as an ES module, so dynamic import() may be required on the command line.
Options can be passed to parquetWrite to adjust parquet file writing behavior:
writer: a generic writer objectschema: parquet schema object (optional)compressed: use snappy compression (default true)statistics: write column statistics (default true)rowGroupSize: number of rows in each row group (default 100000)kvMetadata: extra key-value metadata to be stored in the parquet footer
import { ByteWriter, parquetWrite } from 'hyparquet-writer'
const writer = new ByteWriter()
parquetWrite({
writer,
columnData: [
{ name: 'name', data: ['Alice', 'Bob', 'Charlie'] },
{ name: 'age', data: [25, 30, 35] },
{ name: 'dob', data: [new Date(1000000), new Date(2000000), new Date(3000000)] },
],
// explicit schema:
schema: [
{ name: 'root', num_children: 3 },
{ name: 'name', type: 'BYTE_ARRAY', converted_type: 'UTF8' },
{ name: 'age', type: 'FIXED_LEN_BYTE_ARRAY', type_length: 4, converted_type: 'DECIMAL', scale: 2, precision: 4 },
{ name: 'dob', type: 'INT32', converted_type: 'DATE' },
],
compressed: false,
statistics: false,
rowGroupSize: 1000,
kvMetadata: [
{ key: 'key1', value: 'value1' },
{ key: 'key2', value: 'value2' },
],
})
const arrayBuffer = writer.getBuffer()Parquet requires an explicit schema to be defined. You can provide schema information in three ways:
- Type: You can provide a
typein thecolumnDataelements, the type will be used as the schema type. - Schema: You can provide a
schemaparameter that explicitly defines the parquet schema. The schema should be an array ofSchemaElementobjects (see parquet-format), each containing the following properties:name: column nametype: parquet typenum_children: number children in parquet nested schema (optional)converted_type: parquet converted type (optional)logical_type: parquet logical type (optional)repetition_type: parquet repetition type (optional)type_length: length forFIXED_LENGTH_BYTE_ARRAYtype (optional)scale: the scale factor forDECIMALconverted types (optional)precision: the precision forDECIMALconverted types (optional)field_id: the field id for the column (optional)
- Auto-detect: If you provide no type or schema, the type will be auto-detected from the data. However, it is recommended that you provide type information when possible. (zero rows would throw an exception, floats might be typed as int, etc)
Most converted types will be auto-detected if you just provide data with no types. However, it is still recommended that you provide type information when possible. (zero rows would throw an exception, floats might be typed as int, etc)
You can use mostly automatic schema detection, but override the schema for specific columns. This is useful if most of the column types can be automatically determined, but you want to use a specific schema element for one particular element.
const { ByteWriter, parquetWrite, schemaFromColumnData } = await import("hyparquet-writer")
const columnData = [
{ name: 'unsigned_int', data: [1000000, 2000000] },
{ name: 'signed_int', data: [1000000, 2000000] },
]
const writer = new ByteWriter()
parquetWrite({
writer,
columnData,
// override schema for uint column
schema: schemaFromColumnData({
columnData,
schemaOverrides: {
unsigned_int: {
name: 'unsigned_int',
type: 'INT32',
converted_type: 'UINT_32',
repetition_type: 'REQUIRED',
},
},
}),
})