This assignment requires only two packages:
torchtimetransformerslangchainopencompassdatasetsre
- README.md
- Task1_LLM_inference_acceleration
- 1.1_Experiments_KVcache_Quantization
- gpt2_inference_efficiency.py
- note.md
- result.md
- 1.2_KV_Cache_Implementation
- LICENSE
- README.md
- pycache
- customized_gpt2.py
- data.txt
- documentation.md
- main.py
- outputs
- 1.1_Experiments_KVcache_Quantization
- Task2_LLM_reasoning_techniques
- 2.1_RAG
- DIY_RAG
- LightRAG
- RAG_note.md
- try_api.py
- 2.2_Evaluate_Prompting_Techniques_on_GSM8K
- README.md
- Reflexion
- opencompass_CoT_ICL
- 2.1_RAG
# Inference efficiency
python ./Task1_LLM_inference_acceleration/1.1_Experiments_KVcache_Quantization/gpt2_inference_efficiency.py
# KV Cache
cd ./Task1_LLM_inference_acceleration/1.2_KV_Cache_Implementation/
python main.py# RAG
cd ./Task2_LLM_reasoning_techniques/2.1_RAG/DIY_RAG/
python rag.py# Evaluation with opencompass
cd ./Task2_LLM_reasoning_techniques/2.2_Evaluate_Prompting_Techniques_on_GSM8K/opencompass_CoT_ICL/opencompass/
# 取64条测试
python run.py --models deepseek_api.py --datasets demo_gsm8k_chat_gen.py --debug
# few-shot COT
python run.py --models deepseek_api.py --datasets gsm8k_gen_1d7fe4.py --debug
# few-shot-4 90.07
python run.py --models deepseek_api.py --datasets gsm8k_gen_few_shot.py --debug
# few-shot-4 shuffle 89.46
python run.py --models deepseek_api.py --datasets gsm8k_gen_few_shot_shuffle.py --debug
# few-shot-8 89.16
python run.py --models deepseek_api.py --datasets gsm8k_gen_few_shot_8.py --debug
# few-shot-8 shuffle 89.01
python run.py --models deepseek_api.py --datasets gsm8k_gen_few_shot_8_shuffle.py --debug
# few-shot-8 generated default 90.30
python run.py --models deepseek_api.py --datasets gsm8k_gen_few_shot_generated_default.py --debug
# few-shot-8 generated epoch10 lr1e-2 90.37
python run.py --models deepseek_api.py --datasets gsm8k_gen_few_shot_generated_epoch10_lr_1e-2.py --debug
# few-shot-8 randomly sample from example pool 88.93
python run.py --models deepseek_api.py --datasets gsm8k_gen_few_shot_8_random_sample.py --debug
# COT best prompt: "Let's think step by step."
python run.py --models deepseek_api.py --datasets gsm8k_gen_701491.py --debug
# COT official prompt:"As an expert problem solver solve step by step the following mathematical questions."
python run.py --models deepseek_api.py --datasets gsm8k_gen_cot_official.py --debug
# zero-shot
python run.py --models deepseek_api.py --datasets gsm8k_gen_zero_shot.py --debug # Evaluation with opencompass
cd ./Task2_LLM_reasoning_techniques/2.2_Evaluate_Prompting_Techniques_on_GSM8K/Reflexion/
python reflexion.py