Skip to content

huijeong12/ieie_double_jpeg_detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

셀프 어텐션과 합성곱 신경망을 이용한 이중 압축 JPEG 탐지

Self-attention and Convolution for Double JPEG Detection
주저자(공동): 서민균 최희정 양유진



Abstract

In this paper, we propose a network for double JPEG detection. We generated a new dataset using the quantization tables obtained in [3]. The proposed network consists of 1-dimensional convolutional layers and a transformer encoder[6]. We extract DCT coefficient histogram and quantization table from previously mentioned dataset, and utilize them as input to the network. Also, we localize the forgery region—single JPEG block—by detecting if the JPEG block has been compressed more than once or not. This proposed approach achieved higher accuracy than baseline [3] in detecting single JPEG.



Double JPEG Detection

이중 압축 JPEG의 DCT 계수 히스토그램 분포

  • Single JPEG: Gaussian 분포를 따름
  • Double JPEG: 첫번째 압축에서의 Quality Factor를 Q1, 두번째 압축에서의 Quality Factor를 Q2라고 할 때,
    • Q2 > Q1: Periodic Missing Values
    • Q1 < A2: Periodic Peaks and Valleys
    • Wang, Q. et al.(2016). Double JPEG compression forensics based on a convolutional neural network. EURASIP Journal on Information Security, 2016(1), 1-12.
  • 이러한 패턴의 차이를 통해 특정 JPEG 이미지 블록이 단일 압축인지, 이중 압축인지 판별하는 방법을 Double JPEG Detection



Proposed Network

네트워크 구조


Localizing Forged Region



Localization

Localization 예시 1


Localization 예시 2

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages