Skip to content

Qwen2.5-Omni (based on 4.51.3)

Compare
Choose a tag to compare
@LysandreJik LysandreJik released this 24 Apr 14:07
· 483 commits to main since this release
cb39f7d

A new model is added to transformers: Qwen2.5-Omni.
It is added on top of the v4.51.3 release, and can be installed from the following tag: v4.51.3-Qwen2.5-Omni-preview.

In order to install this version, please install with the following command:

pip install git+https://github.com/huggingface/transformers@v4.51.3-Qwen2.5-Omni-preview

If fixes are needed, they will be applied to this release; this installation may therefore be considered as stable and improving.

As the tag implies, this tag is a preview of the Qwen2.5-Omni model. This tag is a tagged version of the main branch and does not follow semantic versioning. This model will be included in the next minor release: v4.52.0.

Qwen2.5-Omni

image

The Qwen2.5-Omni model is a unified multiple modalities model proposed in Qwen2.5-Omni Technical Report from Qwen team, Alibaba Group.

The abstract from the technical report is the following:

We present Qwen2.5-Omni, an end-to-end multimodal model designed to perceive diverse modalities, including text, images, audio, and video, while simultaneously generating text and natural speech responses in a streaming manner. To enable the streaming of multimodal information inputs, both audio and visual encoders utilize a block-wise processing approach. This strategy effectively decouples the handling of long sequences of multimodal data, assigning the perceptual responsibilities to the multimodal encoder and entrusting the modeling of extended sequences to a large language model.

Such a division of labor enhances the fusion of different modalities via the shared attention mechanism. To synchronize the timestamps of video inputs with audio, we organized the audio and video sequentially in an interleaved manner and propose a novel position embedding approach, named TMRoPE (Time-aligned Multimodal RoPE). To concurrently generate text and speech while avoiding interference between the two modalities, we propose Thinker-Talker architecture.

In this framework, Thinker functions as a large language model tasked with text generation, while Talker is a dual-track autoregressive model that directly utilizes the hidden representations from the Thinker to produce audio tokens as output. Both the Thinker and Talker models are designed to be trained and inferred in an end-to-end manner. For decoding audio tokens in a streaming manner, we introduce a sliding-window DiT that restricts the receptive field, aiming to reduce the initial package delay. Qwen2.5-Omni outperforms the similarly sized Qwen2-VL and Qwen2-Audio in both image and audio capabilities. Furthermore, Qwen2.5-Omni achieves state-of-the-art performance on multimodal benchmarks like Omni-Bench.

Notably, Qwen2.5-Omni is the first open-source model to achieve a level of performance in end-to-end speech instruction following that is comparable to its capabilities with text inputs, as evidenced by benchmarks such as MMLU and GSM8K. As for speech generation, Qwen2.5-Omni’s streaming Talker outperform most existing streaming and non-streaming alternatives in robustness and naturalness.

Usage example

Qwen2.5-Omni can be found on the Huggingface Hub.

Single Media inference

The model can accept text, images, audio and videos as input. Here's an example code for inference.

import soundfile as sf
from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor

model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
    "Qwen/Qwen2.5-Omni-7B",
    torch_dtype="auto",
    device_map="auto"
)
processor = Qwen2_5OmniProcessor.from_pretrained("Qwen/Qwen2.5-Omni-7B")

conversation = [
    {
        "role": "system",
        "content": [
            {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
        ],
    },
    {
        "role": "user",
        "content": [
            {"type": "video", "video": "/path/to/video.mp4"},
            {"type": "text", "text": "What cant you hear and see in this video?"},
        ],
    },
]

inputs = processor.apply_chat_template(
    conversations,
    load_audio_from_video=True,
    add_generation_prompt=True,
    tokenize=True,
    return_dict=True,
    return_tensors="pt",
    video_fps=1,

    # kwargs to be passed to `Qwen2-5-OmniProcessor`
    padding=True,
    use_audio_in_video=True,
).to(model.device)

# Generation params for audio or text can be different and have to be prefixed with `thinker_` or `talker_`
text_ids, audio = model.generate(**inputs, use_audio_in_video=True, thinker_do_sample=False, talker_do_sample=True)
text = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)

sf.write(
    "output.wav",
    audio.reshape(-1).detach().cpu().numpy(),
    samplerate=24000,
)
print(text)

Text-only generation

To generate only text output and save compute by not loading the audio generation model, we can use Qwen2_5OmniThinkerForConditionalGeneration model.

from transformers import Qwen2_5OmniThinkerForConditionalGeneration, Qwen2_5OmniProcessor

model = Qwen2_5OmniThinkerForConditionalGeneration.from_pretrained(
    "Qwen/Qwen2.5-Omni-7B",
    torch_dtype="auto",
    device_map="auto",
)
processor = Qwen2_5OmniProcessor.from_pretrained("Qwen/Qwen2.5-Omni-7B")

conversation = [
    {
        "role": "system",
        "content": [
            {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
        ],
    },
    {
        "role": "user",
        "content": [
            {"type": "video", "video": "/path/to/video.mp4"},
            {"type": "text", "text": "What cant you hear and see in this video?"},
        ],
    },
]

inputs = processor.apply_chat_template(
    conversations,
    load_audio_from_video=True,
    add_generation_prompt=True,
    tokenize=True,
    return_dict=True,
    return_tensors="pt",
    video_fps=1,

    # kwargs to be passed to `Qwen2-5-OmniProcessor`
    padding=True,
    use_audio_in_video=True,
).to(model.device)


text_ids = model.generate(**inputs, use_audio_in_video=True)
text = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)

sf.write(
    "output.wav",
    audio.reshape(-1).detach().cpu().numpy(),
    samplerate=24000,
)
print(text)

Batch Mixed Media Inference

The model can batch inputs composed of mixed samples of various types such as text, images, audio and videos as input when using Qwen2_5OmniThinkerForConditionalGeneration model. Here is an example.

import soundfile as sf
from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor

model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
    "Qwen/Qwen2.5-Omni-7B",
    torch_dtype="auto",
    device_map="auto"
)
processor = Qwen2_5OmniProcessor.from_pretrained("Qwen/Qwen2.5-Omni-7B")

# Conversation with video only
conversation1 = [
    {
        "role": "system",
        "content": [
            {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
        ],
    },
    {
        "role": "user",
        "content": [
            {"type": "video", "path": "/path/to/video.mp4"},
        ]
    }
]

# Conversation with audio only
conversation2 = [
    {
        "role": "system",
        "content": [
            {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
        ],
    },
    {
        "role": "user",
        "content": [
            {"type": "audio", "path": "/path/to/audio.wav"},
        ]
    }
]

# Conversation with pure text
conversation3 = [
    {
        "role": "system",
        "content": [
            {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
        ],
    },
    {
        "role": "user",
        "content": [{"type": "text", "text": "who are you?"}],
    }
]


# Conversation with mixed media
conversation4 = [
    {
        "role": "system",
        "content": [
            {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
        ],
    },
    {
        "role": "user",
        "content": [
            {"type": "image", "path": "/path/to/image.jpg"},
            {"type": "video", "path": "/path/to/video.mp4"},
            {"type": "audio", "path": "/path/to/audio.wav"},
            {"type": "text", "text": "What are the elements can you see and hear in these medias?"},
        ],
    }
]

conversations = [conversation1, conversation2, conversation3, conversation4]

inputs = processor.apply_chat_template(
    conversations,
    load_audio_from_video=True,
    add_generation_prompt=True,
    tokenize=True,
    return_dict=True,
    return_tensors="pt",
    video_fps=1,

    # kwargs to be passed to `Qwen2-5-OmniProcessor`
    padding=True,
    use_audio_in_video=True,
).to(model.thinker.device)

text_ids = model.generate(**inputs, use_audio_in_video=True)
text = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)

print(text)

Usage Tips

Image Resolution trade-off

The model supports a wide range of resolution inputs. By default, it uses the native resolution for input, but higher resolutions can enhance performance at the cost of more computation. Users can set the minimum and maximum number of pixels to achieve an optimal configuration for their needs.

min_pixels = 128*28*28
max_pixels = 768*28*28
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-Omni-7B", min_pixels=min_pixels, max_pixels=max_pixels)

Prompt for audio output

If users need audio output, the system prompt must be set as "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.", otherwise the audio output may not work as expected.

{
    "role": "system",
    "content": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.",
}

Use audio output or not

The model supports both text and audio outputs, if users do not need audio outputs, they can set enable_audio_output in the from_pretrained function. This option will save about ~2GB of GPU memory but the return_audio option for generate function will only allow to be set at False.

model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
    "Qwen/Qwen2.5-Omni-7B",
    torch_dtype="auto",
    device_map="auto",
    enable_audio_output=False,
)

In order to obtain a flexible experience, we recommend that users set enable_audio_output at True when initializing the model through from_pretrained function, and then decide whether to return audio when generate function is called. When return_audio is set to False, the model will only return text outputs to get text responses faster.

model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
    "Qwen/Qwen2.5-Omni-7B",
    torch_dtype="auto",
    device_map="auto",
    enable_audio_output=True,
)
...
text_ids = model.generate(**inputs, return_audio=False)

Change voice type of output audio

Qwen2.5-Omni supports the ability to change the voice of the output audio. Users can use the spk parameter of generate function to specify the voice type. The "Qwen/Qwen2.5-Omni-7B" checkpoint support two voice types: Chelsie and Ethan, while Chelsie is a female voice and Ethan is a male voice. By defalut, if spk is not specified, the default voice type is Chelsie.

text_ids, audio = model.generate(**inputs, spk="Chelsie")
text_ids, audio = model.generate(**inputs, spk="Ethan")

Flash-Attention 2 to speed up generation

First, make sure to install the latest version of Flash Attention 2:

pip install -U flash-attn --no-build-isolation

Also, you should have hardware that is compatible with FlashAttention 2. Read more about it in the official documentation of the flash attention repository. FlashAttention-2 can only be used when a model is loaded in torch.float16 or torch.bfloat16.

To load and run a model using FlashAttention-2, add attn_implementation="flash_attention_2" when loading the model:

from transformers import Qwen2_5OmniForConditionalGeneration

model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
    "Qwen/Qwen2.5-Omni-7B",
    device_map="auto",
    torch_dtype=torch.bfloat16,
    attn_implementation="flash_attention_2",
)