|
2 | 2 |
|
3 | 3 | ## What's New
|
4 | 4 |
|
| 5 | +### Feb 12, 2020 |
| 6 | +* Add EfficientNet-L2 and B0-B7 NoisyStudent weights ported from [Tensorflow TPU](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |
| 7 | + |
5 | 8 | ### Feb 6, 2020
|
6 | 9 | * Add RandAugment trained EfficientNet-ES (EdgeTPU-Small) weights with 78.1 top-1. Trained by [Andrew Lavin](https://github.com/andravin) (see Training section for hparams)
|
7 | 10 |
|
@@ -98,15 +101,16 @@ Included models:
|
98 | 101 | * DPN (from [myself](https://github.com/rwightman/pytorch-dpn-pretrained))
|
99 | 102 | * DPN-68, DPN-68b, DPN-92, DPN-98, DPN-131, DPN-107
|
100 | 103 | * EfficientNet (from my standalone [GenEfficientNet](https://github.com/rwightman/gen-efficientnet-pytorch)) - A generic model that implements many of the efficient models that utilize similar DepthwiseSeparable and InvertedResidual blocks
|
101 |
| - * EfficientNet AdvProp (B0-B8) (https://arxiv.org/abs/1911.09665) -- TF weights ported |
102 |
| - * EfficientNet (B0-B7) (https://arxiv.org/abs/1905.11946) -- TF weights ported, B0-B2 finetuned PyTorch |
103 |
| - * EfficientNet-EdgeTPU (S, M, L) (https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html) --TF weights ported |
104 |
| - * MixNet (https://arxiv.org/abs/1907.09595) -- TF weights ported, PyTorch finetuned (S, M, L) or trained models (XL) |
105 |
| - * MNASNet B1, A1 (Squeeze-Excite), and Small (https://arxiv.org/abs/1807.11626) -- trained in PyTorch |
| 104 | + * EfficientNet NoisyStudent (B0-B7, L2) (https://arxiv.org/abs/1911.04252) |
| 105 | + * EfficientNet AdvProp (B0-B8) (https://arxiv.org/abs/1911.09665) |
| 106 | + * EfficientNet (B0-B7) (https://arxiv.org/abs/1905.11946) |
| 107 | + * EfficientNet-EdgeTPU (S, M, L) (https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html) |
| 108 | + * MixNet (https://arxiv.org/abs/1907.09595) |
| 109 | + * MNASNet B1, A1 (Squeeze-Excite), and Small (https://arxiv.org/abs/1807.11626) |
106 | 110 | * MobileNet-V2 (https://arxiv.org/abs/1801.04381)
|
107 |
| - * FBNet-C (https://arxiv.org/abs/1812.03443) -- trained in PyTorch |
108 |
| - * Single-Path NAS (https://arxiv.org/abs/1904.02877) -- pixel1 variant |
109 |
| -* MobileNet-V3 (https://arxiv.org/abs/1905.02244) -- pretrained PyTorch model, official TF weights ported |
| 111 | + * FBNet-C (https://arxiv.org/abs/1812.03443) |
| 112 | + * Single-Path NAS (https://arxiv.org/abs/1904.02877) |
| 113 | +* MobileNet-V3 (https://arxiv.org/abs/1905.02244) |
110 | 114 | * HRNet
|
111 | 115 | * code from https://github.com/HRNet/HRNet-Image-Classification, paper https://arxiv.org/abs/1908.07919
|
112 | 116 | * SelecSLS
|
@@ -178,30 +182,48 @@ For the models below, the model code and weight porting from Tensorflow or MXNet
|
178 | 182 |
|
179 | 183 | | Model | Prec@1 (Err) | Prec@5 (Err) | Param # | Image Scaling | Image Size |
|
180 | 184 | |---|---|---|---|---|---|
|
| 185 | +| tf_efficientnet_l2_ns *tfp | 88.352 (11.648) | 98.652 (1.348) | 480 | bicubic | 800 | |
| 186 | +| tf_efficientnet_l2_ns | TBD | TBD | 480 | bicubic | 800 | |
| 187 | +| tf_efficientnet_l2_ns_475 | 88.234 (11.766) | 98.546 (1.454)f | 480 | bicubic | 475 | |
| 188 | +| tf_efficientnet_l2_ns_475 *tfp | 88.172 (11.828) | 98.566 (1.434) | 480 | bicubic | 475 | |
| 189 | +| tf_efficientnet_b7_ns *tfp | 86.844 (13.156) | 98.084 (1.916) | 66.35 | bicubic | 600 | |
| 190 | +| tf_efficientnet_b7_ns | 86.840 (13.160) | 98.094 (1.906) | 66.35 | bicubic | 600 | |
| 191 | +| tf_efficientnet_b6_ns | 86.452 (13.548) | 97.882 (2.118) | 43.04 | bicubic | 528 | |
| 192 | +| tf_efficientnet_b6_ns *tfp | 86.444 (13.556) | 97.880 (2.120) | 43.04 | bicubic | 528 | |
| 193 | +| tf_efficientnet_b5_ns *tfp | 86.064 (13.936) | 97.746 (2.254) | 30.39 | bicubic | 456 | |
| 194 | +| tf_efficientnet_b5_ns | 86.088 (13.912) | 97.752 (2.248) | 30.39 | bicubic | 456 | |
181 | 195 | | tf_efficientnet_b8_ap *tfp | 85.436 (14.564) | 97.272 (2.728) | 87.4 | bicubic | 672 |
|
182 |
| -| tf_efficientnet_b8 *tfp | 85.384 (14.616) | 97.394 (2.606) | 87.4 | bicubic | 672 | |
183 |
| -| tf_efficientnet_b8 | 85.37 (14.63) | 97.39 (2.61) | 87.4 | bicubic | 672 | |
| 196 | +| tf_efficientnet_b8 *tfp | 85.384 (14.616) | 97.394 (2.606) | 87.4 | bicubic | 672 | |
| 197 | +| tf_efficientnet_b8 | 85.370 (14.630) | 97.390 (2.610) | 87.4 | bicubic | 672 | |
184 | 198 | | tf_efficientnet_b8_ap | 85.368 (14.632) | 97.294 (2.706) | 87.4 | bicubic | 672 |
|
| 199 | +| tf_efficientnet_b4_ns *tfp | 85.298 (14.702) | 97.504 (2.496) | 19.34 | bicubic | 380 | |
| 200 | +| tf_efficientnet_b4_ns | 85.162 (14.838) | 97.470 (2.530) | 19.34 | bicubic | 380 | |
185 | 201 | | tf_efficientnet_b7_ap *tfp | 85.154 (14.846) | 97.244 (2.756) | 66.35 | bicubic | 600 |
|
186 | 202 | | tf_efficientnet_b7_ap | 85.118 (14.882) | 97.252 (2.748) | 66.35 | bicubic | 600 |
|
187 |
| -| tf_efficientnet_b7 *tfp | 84.940 (15.060) | 97.214 (2.786) | 66.35 | bicubic | 600 | |
188 |
| -| tf_efficientnet_b7 | 84.932 (15.068) | 97.208 (2.792) | 66.35 | bicubic | 600 | |
| 203 | +| tf_efficientnet_b7 *tfp | 84.940 (15.060) | 97.214 (2.786) | 66.35 | bicubic | 600 | |
| 204 | +| tf_efficientnet_b7 | 84.932 (15.068) | 97.208 (2.792) | 66.35 | bicubic | 600 | |
189 | 205 | | tf_efficientnet_b6_ap | 84.786 (15.214) | 97.138 (2.862) | 43.04 | bicubic | 528 |
|
190 | 206 | | tf_efficientnet_b6_ap *tfp | 84.760 (15.240) | 97.124 (2.876) | 43.04 | bicubic | 528 |
|
191 | 207 | | tf_efficientnet_b5_ap *tfp | 84.276 (15.724) | 96.932 (3.068) | 30.39 | bicubic | 456 |
|
192 | 208 | | tf_efficientnet_b5_ap | 84.254 (15.746) | 96.976 (3.024) | 30.39 | bicubic | 456 |
|
193 |
| -| tf_efficientnet_b6 *tfp | 84.140 (15.860) | 96.852 (3.148) | 43.04 | bicubic | 528 | |
194 |
| -| tf_efficientnet_b6 | 84.110 (15.890) | 96.886 (3.114) | 43.04 | bicubic | 528 | |
195 |
| -| tf_efficientnet_b5 *tfp | 83.822 (16.178) | 96.756 (3.244) | 30.39 | bicubic | 456 | |
196 |
| -| tf_efficientnet_b5 | 83.812 (16.188) | 96.748 (3.252) | 30.39 | bicubic | 456 | |
| 209 | +| tf_efficientnet_b6 *tfp | 84.140 (15.860) | 96.852 (3.148) | 43.04 | bicubic | 528 | |
| 210 | +| tf_efficientnet_b6 | 84.110 (15.890) | 96.886 (3.114) | 43.04 | bicubic | 528 | |
| 211 | +| tf_efficientnet_b3_ns *tfp | 84.054 (15.946) | 96.918 (3.082) | 12.23 | bicubic | 300 | |
| 212 | +| tf_efficientnet_b3_ns | 84.048 (15.952) | 96.910 (3.090) | 12.23 | bicubic | 300 | |
| 213 | +| tf_efficientnet_b5 *tfp | 83.822 (16.178) | 96.756 (3.244) | 30.39 | bicubic | 456 | |
| 214 | +| tf_efficientnet_b5 | 83.812 (16.188) | 96.748 (3.252) | 30.39 | bicubic | 456 | |
197 | 215 | | tf_efficientnet_b4_ap *tfp | 83.278 (16.722) | 96.376 (3.624) | 19.34 | bicubic | 380 |
|
198 | 216 | | tf_efficientnet_b4_ap | 83.248 (16.752) | 96.388 (3.612) | 19.34 | bicubic | 380 |
|
199 |
| -| tf_efficientnet_b4 | 83.022 (16.978) | 96.300 (3.700) | 19.34 | bicubic | 380 | |
200 |
| -| tf_efficientnet_b4 *tfp | 82.948 (17.052) | 96.308 (3.692) | 19.34 | bicubic | 380 | |
| 217 | +| tf_efficientnet_b4 | 83.022 (16.978) | 96.300 (3.700) | 19.34 | bicubic | 380 | |
| 218 | +| tf_efficientnet_b4 *tfp | 82.948 (17.052) | 96.308 (3.692) | 19.34 | bicubic | 380 | |
| 219 | +| tf_efficientnet_b2_ns *tfp | 82.436 (17.564) | 96.268 (3.732) | 9.11 | bicubic | 260 | |
| 220 | +| tf_efficientnet_b2_ns | 82.380 (17.620) | 96.248 (3.752) | 9.11 | bicubic | 260 | |
201 | 221 | | tf_efficientnet_b3_ap *tfp | 81.882 (18.118) | 95.662 (4.338) | 12.23 | bicubic | 300 |
|
202 | 222 | | tf_efficientnet_b3_ap | 81.828 (18.172) | 95.624 (4.376) | 12.23 | bicubic | 300 |
|
203 |
| -| tf_efficientnet_b3 | 81.636 (18.364) | 95.718 (4.282) | 12.23 | bicubic | 300 | |
204 |
| -| tf_efficientnet_b3 *tfp | 81.576 (18.424) | 95.662 (4.338) | 12.23 | bicubic | 300 | |
| 223 | +| tf_efficientnet_b3 | 81.636 (18.364) | 95.718 (4.282) | 12.23 | bicubic | 300 | |
| 224 | +| tf_efficientnet_b3 *tfp | 81.576 (18.424) | 95.662 (4.338) | 12.23 | bicubic | 300 | |
| 225 | +| tf_efficientnet_b1_ns *tfp | 81.514 (18.486) | 95.776 (4.224) | 7.79 | bicubic | 240 | |
| 226 | +| tf_efficientnet_b1_ns | 81.388 (18.612) | 95.738 (4.262) | 7.79 | bicubic | 240 | |
205 | 227 | | gluon_senet154 | 81.224 (18.776) | 95.356 (4.644) | 115.09 | bicubic | 224 |
|
206 | 228 | | gluon_resnet152_v1s | 81.012 (18.988) | 95.416 (4.584) | 60.32 | bicubic | 224 |
|
207 | 229 | | gluon_seresnext101_32x4d | 80.902 (19.098) | 95.294 (4.706) | 48.96 | bicubic | 224 |
|
@@ -233,10 +255,12 @@ For the models below, the model code and weight porting from Tensorflow or MXNet
|
233 | 255 | | tf_efficientnet_em *tfp | 78.958 (21.042) | 94.458 (5.542) | 6.90 | bicubic | 240 |
|
234 | 256 | | tf_mixnet_l *tfp | 78.846 (21.154) | 94.212 (5.788) | 7.33 | bilinear | 224 |
|
235 | 257 | | tf_efficientnet_b1 | 78.826 (21.174) | 94.198 (5.802) | 7.79 | bicubic | 240 |
|
| 258 | +| tf_efficientnet_b0_ns *tfp | 78.806 (21.194) | 94.496 (5.504) | 5.29 | bicubic | 224 | |
236 | 259 | | gluon_inception_v3 | 78.804 (21.196) | 94.380 (5.620) | 27.16M | bicubic | 299 |
|
237 | 260 | | tf_mixnet_l | 78.770 (21.230) | 94.004 (5.996) | 7.33 | bicubic | 224 |
|
238 | 261 | | tf_efficientnet_em | 78.742 (21.258) | 94.332 (5.668) | 6.90 | bicubic | 240 |
|
239 | 262 | | gluon_resnet50_v1s | 78.712 (21.288) | 94.242 (5.758) | 25.68 | bicubic | 224 |
|
| 263 | +| tf_efficientnet_b0_ns | 78.658 (21.342) | 94.376 (5.624) | 5.29 | bicubic | 224 | |
240 | 264 | | tf_efficientnet_cc_b0_8e *tfp | 78.314 (21.686) | 93.790 (6.210) | 24.0 | bicubic | 224 |
|
241 | 265 | | gluon_resnet50_v1c | 78.010 (21.990) | 93.988 (6.012) | 25.58 | bicubic | 224 |
|
242 | 266 | | tf_efficientnet_cc_b0_8e | 77.908 (22.092) | 93.656 (6.344) | 24.0 | bicubic | 224 |
|
|
0 commit comments