Skip to content

Commit fa38f24

Browse files
committed
Update SK network configs, add weights for skresnet8 and skresnext50
1 parent 5e6dbba commit fa38f24

File tree

1 file changed

+28
-34
lines changed

1 file changed

+28
-34
lines changed

timm/models/sknet.py

Lines changed: 28 additions & 34 deletions
Original file line numberDiff line numberDiff line change
@@ -13,19 +13,21 @@ def _cfg(url='', **kwargs):
1313
return {
1414
'url': url,
1515
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
16-
'crop_pct': 0.875, 'interpolation': 'bilinear',
16+
'crop_pct': 0.875, 'interpolation': 'bicubic',
1717
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
1818
'first_conv': 'conv1', 'classifier': 'fc',
1919
**kwargs
2020
}
2121

2222

2323
default_cfgs = {
24-
'skresnet18': _cfg(url=''),
25-
'skresnet26d': _cfg(),
24+
'skresnet18': _cfg(
25+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet18_ra-4eec2804.pth'),
26+
'skresnet34': _cfg(url=''),
2627
'skresnet50': _cfg(),
2728
'skresnet50d': _cfg(),
28-
'skresnext50_32x4d': _cfg(),
29+
'skresnext50_32x4d': _cfg(
30+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnext50_ra-f40e40bf.pth'),
2931
}
3032

3133

@@ -134,24 +136,10 @@ def forward(self, x):
134136

135137
@register_model
136138
def skresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
137-
"""Constructs a ResNet-18 model.
138-
"""
139-
default_cfg = default_cfgs['skresnet18']
140-
sk_kwargs = dict(
141-
min_attn_channels=16,
142-
)
143-
model = ResNet(
144-
SelectiveKernelBasic, [2, 2, 2, 2], num_classes=num_classes, in_chans=in_chans,
145-
block_args=dict(sk_kwargs=sk_kwargs), **kwargs)
146-
model.default_cfg = default_cfg
147-
if pretrained:
148-
load_pretrained(model, default_cfg, num_classes, in_chans)
149-
return model
150-
139+
"""Constructs a Selective Kernel ResNet-18 model.
151140
152-
@register_model
153-
def sksresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
154-
"""Constructs a ResNet-18 model.
141+
Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this
142+
variation splits the input channels to the selective convolutions to keep param count down.
155143
"""
156144
default_cfg = default_cfgs['skresnet18']
157145
sk_kwargs = dict(
@@ -169,17 +157,21 @@ def sksresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
169157

170158

171159
@register_model
172-
def skresnet26d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
173-
"""Constructs a ResNet-26 model.
160+
def skresnet34(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
161+
"""Constructs a Selective Kernel ResNet-34 model.
162+
163+
Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this
164+
variation splits the input channels to the selective convolutions to keep param count down.
174165
"""
175-
default_cfg = default_cfgs['skresnet26d']
166+
default_cfg = default_cfgs['skresnet34']
176167
sk_kwargs = dict(
177-
keep_3x3=False,
168+
min_attn_channels=16,
169+
attn_reduction=8,
170+
split_input=True
178171
)
179172
model = ResNet(
180-
SelectiveKernelBottleneck, [2, 2, 2, 2], stem_width=32, stem_type='deep', avg_down=True,
181-
num_classes=num_classes, in_chans=in_chans, block_args=dict(sk_kwargs=sk_kwargs), zero_init_last_bn=False
182-
**kwargs)
173+
SelectiveKernelBasic, [3, 4, 6, 3], num_classes=num_classes, in_chans=in_chans,
174+
block_args=dict(sk_kwargs=sk_kwargs), zero_init_last_bn=False, **kwargs)
183175
model.default_cfg = default_cfg
184176
if pretrained:
185177
load_pretrained(model, default_cfg, num_classes, in_chans)
@@ -189,11 +181,12 @@ def skresnet26d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
189181
@register_model
190182
def skresnet50(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
191183
"""Constructs a Select Kernel ResNet-50 model.
192-
Based on config in "Compounding the Performance Improvements of Assembled Techniques in a
193-
Convolutional Neural Network"
184+
185+
Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this
186+
variation splits the input channels to the selective convolutions to keep param count down.
194187
"""
195188
sk_kwargs = dict(
196-
attn_reduction=2,
189+
split_input=True,
197190
)
198191
default_cfg = default_cfgs['skresnet50']
199192
model = ResNet(
@@ -208,11 +201,12 @@ def skresnet50(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
208201
@register_model
209202
def skresnet50d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
210203
"""Constructs a Select Kernel ResNet-50-D model.
211-
Based on config in "Compounding the Performance Improvements of Assembled Techniques in a
212-
Convolutional Neural Network"
204+
205+
Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this
206+
variation splits the input channels to the selective convolutions to keep param count down.
213207
"""
214208
sk_kwargs = dict(
215-
attn_reduction=2,
209+
split_input=True,
216210
)
217211
default_cfg = default_cfgs['skresnet50d']
218212
model = ResNet(

0 commit comments

Comments
 (0)