Skip to content

[modular diffusers] Wan #11913

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 10 commits into from
Jul 23, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions src/diffusers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -366,6 +366,8 @@
[
"StableDiffusionXLAutoBlocks",
"StableDiffusionXLModularPipeline",
"WanAutoBlocks",
"WanModularPipeline",
]
)
_import_structure["pipelines"].extend(
Expand Down Expand Up @@ -999,6 +1001,8 @@
from .modular_pipelines import (
StableDiffusionXLAutoBlocks,
StableDiffusionXLModularPipeline,
WanAutoBlocks,
WanModularPipeline,
)
from .pipelines import (
AllegroPipeline,
Expand Down
10 changes: 10 additions & 0 deletions src/diffusers/hooks/_helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,6 +107,7 @@ def _register(cls):
def _register_attention_processors_metadata():
from ..models.attention_processor import AttnProcessor2_0
from ..models.transformers.transformer_cogview4 import CogView4AttnProcessor
from ..models.transformers.transformer_wan import WanAttnProcessor2_0

# AttnProcessor2_0
AttentionProcessorRegistry.register(
Expand All @@ -124,6 +125,14 @@ def _register_attention_processors_metadata():
),
)

# WanAttnProcessor2_0
AttentionProcessorRegistry.register(
model_class=WanAttnProcessor2_0,
metadata=AttentionProcessorMetadata(
skip_processor_output_fn=_skip_proc_output_fn_Attention_WanAttnProcessor2_0,
),
)


def _register_transformer_blocks_metadata():
from ..models.attention import BasicTransformerBlock
Expand Down Expand Up @@ -261,4 +270,5 @@ def _skip_attention___ret___hidden_states___encoder_hidden_states(self, *args, *

_skip_proc_output_fn_Attention_AttnProcessor2_0 = _skip_attention___ret___hidden_states
_skip_proc_output_fn_Attention_CogView4AttnProcessor = _skip_attention___ret___hidden_states___encoder_hidden_states
_skip_proc_output_fn_Attention_WanAttnProcessor2_0 = _skip_attention___ret___hidden_states
# fmt: on
15 changes: 12 additions & 3 deletions src/diffusers/hooks/layer_skip.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,10 +91,19 @@ def __torch_function__(self, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
if func is torch.nn.functional.scaled_dot_product_attention:
query = kwargs.get("query", None)
key = kwargs.get("key", None)
value = kwargs.get("value", None)
if value is None:
value = args[2]
return value
query = query if query is not None else args[0]
key = key if key is not None else args[1]
value = value if value is not None else args[2]
# If the Q sequence length does not match KV sequence length, methods like
# Perturbed Attention Guidance cannot be used (because the caller expects
# the same sequence length as Q, but if we return V here, it will not match).
# When Q.shape[2] != V.shape[2], PAG will essentially not be applied and
# the overall effect would that be of normal CFG with a scale of (guidance_scale + perturbed_guidance_scale).
if query.shape[2] == value.shape[2]:
return value
return func(*args, **kwargs)


Expand Down
2 changes: 2 additions & 0 deletions src/diffusers/modular_pipelines/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@
"InsertableDict",
]
_import_structure["stable_diffusion_xl"] = ["StableDiffusionXLAutoBlocks", "StableDiffusionXLModularPipeline"]
_import_structure["wan"] = ["WanAutoBlocks", "WanModularPipeline"]
_import_structure["components_manager"] = ["ComponentsManager"]

if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
Expand Down Expand Up @@ -71,6 +72,7 @@
StableDiffusionXLAutoBlocks,
StableDiffusionXLModularPipeline,
)
from .wan import WanAutoBlocks, WanModularPipeline
else:
import sys

Expand Down
2 changes: 2 additions & 0 deletions src/diffusers/modular_pipelines/modular_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,12 +60,14 @@
MODULAR_PIPELINE_MAPPING = OrderedDict(
[
("stable-diffusion-xl", "StableDiffusionXLModularPipeline"),
("wan", "WanModularPipeline"),
]
)

MODULAR_PIPELINE_BLOCKS_MAPPING = OrderedDict(
[
("StableDiffusionXLModularPipeline", "StableDiffusionXLAutoBlocks"),
("WanModularPipeline", "WanAutoBlocks"),
]
)

Expand Down
66 changes: 66 additions & 0 deletions src/diffusers/modular_pipelines/wan/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
from typing import TYPE_CHECKING

from ...utils import (
DIFFUSERS_SLOW_IMPORT,
OptionalDependencyNotAvailable,
_LazyModule,
get_objects_from_module,
is_torch_available,
is_transformers_available,
)


_dummy_objects = {}
_import_structure = {}

try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils import dummy_torch_and_transformers_objects # noqa F403

_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["encoders"] = ["WanTextEncoderStep"]
_import_structure["modular_blocks"] = [
"ALL_BLOCKS",
"AUTO_BLOCKS",
"TEXT2VIDEO_BLOCKS",
"WanAutoBeforeDenoiseStep",
"WanAutoBlocks",
"WanAutoBlocks",
"WanAutoDecodeStep",
"WanAutoDenoiseStep",
]
_import_structure["modular_pipeline"] = ["WanModularPipeline"]

if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .encoders import WanTextEncoderStep
from .modular_blocks import (
ALL_BLOCKS,
AUTO_BLOCKS,
TEXT2VIDEO_BLOCKS,
WanAutoBeforeDenoiseStep,
WanAutoBlocks,
WanAutoDecodeStep,
WanAutoDenoiseStep,
)
from .modular_pipeline import WanModularPipeline
else:
import sys

sys.modules[__name__] = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
module_spec=__spec__,
)

for name, value in _dummy_objects.items():
setattr(sys.modules[__name__], name, value)
Loading
Loading