Skip to content

feat(embeddingModel): add embedding model into mongodb #1362

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion .env
Original file line number Diff line number Diff line change
Expand Up @@ -176,4 +176,6 @@ HF_ORG_ADMIN=
HF_ORG_EARLY_ACCESS=

PUBLIC_SMOOTH_UPDATES=false
COMMUNITY_TOOLS=false
COMMUNITY_TOOLS=false

ENCRYPTION_KEY=#your encryption key here
8 changes: 4 additions & 4 deletions scripts/populate.ts
Original file line number Diff line number Diff line change
Expand Up @@ -14,8 +14,7 @@ import type { User } from "../src/lib/types/User";
import type { Assistant } from "../src/lib/types/Assistant";
import type { Conversation } from "../src/lib/types/Conversation";
import type { Settings } from "../src/lib/types/Settings";
import type { CommunityToolDB, ToolLogoColor, ToolLogoIcon } from "../src/lib/types/Tool";
import { defaultEmbeddingModel } from "../src/lib/server/embeddingModels.ts";
import { getDefaultEmbeddingModel } from "../src/lib/server/embeddingModels.ts";
import { Message } from "../src/lib/types/Message.ts";

import { addChildren } from "../src/lib/utils/tree/addChildren.ts";
Expand Down Expand Up @@ -148,6 +147,7 @@ async function seed() {
updatedAt: faker.date.recent({ days: 30 }),
customPrompts: {},
assistants: [],
disableStream: false,
};
await collections.settings.updateOne(
{ userId: user._id },
Expand Down Expand Up @@ -216,7 +216,7 @@ async function seed() {
: faker.helpers.maybe(() => faker.hacker.phrase(), { probability: 0.5 })) ?? "";

const messages = await generateMessages(preprompt);

const defaultEmbeddingModel = await getDefaultEmbeddingModel();
const conv = {
_id: new ObjectId(),
userId: user._id,
Expand All @@ -226,7 +226,7 @@ async function seed() {
updatedAt: faker.date.recent({ days: 145 }),
model: faker.helpers.arrayElement(modelIds),
title: faker.internet.emoji() + " " + faker.hacker.phrase(),
embeddingModel: defaultEmbeddingModel.id,
embeddingModel: defaultEmbeddingModel.name,
messages,
rootMessageId: messages[0].id,
} satisfies Conversation;
Expand Down
4 changes: 4 additions & 0 deletions src/hooks.server.ts
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@ import { initExitHandler } from "$lib/server/exitHandler";
import { ObjectId } from "mongodb";
import { refreshAssistantsCounts } from "$lib/jobs/refresh-assistants-counts";
import { refreshConversationStats } from "$lib/jobs/refresh-conversation-stats";
import { pupulateEmbeddingModel } from "$lib/server/embeddingModels";

// TODO: move this code on a started server hook, instead of using a "building" flag
if (!building) {
Expand All @@ -26,6 +27,9 @@ if (!building) {
if (env.ENABLE_ASSISTANTS) {
refreshAssistantsCounts();
}

await pupulateEmbeddingModel();

refreshConversationStats();

// Init metrics server
Expand Down
6 changes: 6 additions & 0 deletions src/lib/server/database.ts
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ import { logger } from "$lib/server/logger";
import { building } from "$app/environment";
import type { TokenCache } from "$lib/types/TokenCache";
import { onExit } from "./exitHandler";
import type { EmbeddingModel } from "$lib/types/EmbeddingModel";

export const CONVERSATION_STATS_COLLECTION = "conversations.stats";

Expand Down Expand Up @@ -88,6 +89,7 @@ export class Database {
const semaphores = db.collection<Semaphore>("semaphores");
const tokenCaches = db.collection<TokenCache>("tokens");
const tools = db.collection<CommunityToolDB>("tools");
const embeddingModels = db.collection<EmbeddingModel>("embeddingModels");

return {
conversations,
Expand All @@ -106,6 +108,7 @@ export class Database {
semaphores,
tokenCaches,
tools,
embeddingModels,
};
}

Expand All @@ -129,6 +132,7 @@ export class Database {
semaphores,
tokenCaches,
tools,
embeddingModels,
} = this.getCollections();

conversations
Expand Down Expand Up @@ -228,6 +232,8 @@ export class Database {
tools.createIndex({ createdById: 1, userCount: -1 }).catch((e) => logger.error(e));
tools.createIndex({ userCount: 1 }).catch((e) => logger.error(e));
tools.createIndex({ last24HoursCount: 1 }).catch((e) => logger.error(e));

embeddingModels.createIndex({ name: 1 }, { unique: true }).catch((e) => logger.error(e));
}
}

Expand Down
5 changes: 3 additions & 2 deletions src/lib/server/embeddingEndpoints/embeddingEndpoints.ts
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@ import {
embeddingEndpointOpenAIParametersSchema,
} from "./openai/embeddingEndpoints";
import { embeddingEndpointHfApi, embeddingEndpointHfApiSchema } from "./hfApi/embeddingHfApi";
import type { EmbeddingModel } from "$lib/types/EmbeddingModel";

// parameters passed when generating text
interface EmbeddingEndpointParameters {
Expand All @@ -33,8 +34,8 @@ export const embeddingEndpointSchema = z.discriminatedUnion("type", [
type EmbeddingEndpointTypeOptions = z.infer<typeof embeddingEndpointSchema>["type"];

// generator function that takes in type discrimantor value for defining the endpoint and return the endpoint
export type EmbeddingEndpointGenerator<T extends EmbeddingEndpointTypeOptions> = (
inputs: Extract<z.infer<typeof embeddingEndpointSchema>, { type: T }>
type EmbeddingEndpointGenerator<T extends EmbeddingEndpointTypeOptions> = (
inputs: Extract<z.infer<typeof embeddingEndpointSchema>, { type: T }> & { model: EmbeddingModel }
) => EmbeddingEndpoint | Promise<EmbeddingEndpoint>;

// list of all endpoint generators
Expand Down
19 changes: 14 additions & 5 deletions src/lib/server/embeddingEndpoints/hfApi/embeddingHfApi.ts
Original file line number Diff line number Diff line change
Expand Up @@ -3,22 +3,31 @@ import type { EmbeddingEndpoint, Embedding } from "../embeddingEndpoints";
import { chunk } from "$lib/utils/chunk";
import { env } from "$env/dynamic/private";
import { logger } from "$lib/server/logger";
import type { EmbeddingModel } from "$lib/types/EmbeddingModel";
import { decrypt } from "$lib/utils/encryption";

export const embeddingEndpointHfApiSchema = z.object({
weight: z.number().int().positive().default(1),
model: z.any(),
type: z.literal("hfapi"),
authorization: z
.string()
.optional()
.transform((v) => (!v && env.HF_TOKEN ? "Bearer " + env.HF_TOKEN : v)), // if the header is not set but HF_TOKEN is, use it as the authorization header
});

type EmbeddingEndpointHfApiInput = z.input<typeof embeddingEndpointHfApiSchema> & {
model: EmbeddingModel;
};

export async function embeddingEndpointHfApi(
input: z.input<typeof embeddingEndpointHfApiSchema>
input: EmbeddingEndpointHfApiInput
): Promise<EmbeddingEndpoint> {
const { model, authorization } = embeddingEndpointHfApiSchema.parse(input);
const url = "https://api-inference.huggingface.co/models/" + model.id;
const { model } = input;
const { authorization } = embeddingEndpointHfApiSchema.parse(input);

const decryptedAuthorization = authorization && decrypt(authorization);

const url = "https://api-inference.huggingface.co/models/" + model.name;

return async ({ inputs }) => {
const batchesInputs = chunk(inputs, 128);
Expand All @@ -30,7 +39,7 @@ export async function embeddingEndpointHfApi(
headers: {
Accept: "application/json",
"Content-Type": "application/json",
...(authorization ? { Authorization: authorization } : {}),
...(decryptedAuthorization ? { Authorization: decryptedAuthorization } : {}),
},
body: JSON.stringify({
inputs: {
Expand Down
17 changes: 12 additions & 5 deletions src/lib/server/embeddingEndpoints/openai/embeddingEndpoints.ts
Original file line number Diff line number Diff line change
Expand Up @@ -2,21 +2,28 @@ import { z } from "zod";
import type { EmbeddingEndpoint, Embedding } from "../embeddingEndpoints";
import { chunk } from "$lib/utils/chunk";
import { env } from "$env/dynamic/private";
import type { EmbeddingModel } from "$lib/types/EmbeddingModel";
import { decrypt } from "$lib/utils/encryption";

export const embeddingEndpointOpenAIParametersSchema = z.object({
weight: z.number().int().positive().default(1),
model: z.any(),
type: z.literal("openai"),
url: z.string().url().default("https://api.openai.com/v1/embeddings"),
apiKey: z.string().default(env.OPENAI_API_KEY),
defaultHeaders: z.record(z.string()).default({}),
});

type EmbeddingEndpointOpenAIInput = z.input<typeof embeddingEndpointOpenAIParametersSchema> & {
model: EmbeddingModel;
};

export async function embeddingEndpointOpenAI(
input: z.input<typeof embeddingEndpointOpenAIParametersSchema>
input: EmbeddingEndpointOpenAIInput
): Promise<EmbeddingEndpoint> {
const { url, model, apiKey, defaultHeaders } =
embeddingEndpointOpenAIParametersSchema.parse(input);
const { model } = input;
const { url, apiKey, defaultHeaders } = embeddingEndpointOpenAIParametersSchema.parse(input);

const decryptedApiKey = decrypt(apiKey);

const maxBatchSize = model.maxBatchSize || 100;

Expand All @@ -32,7 +39,7 @@ export async function embeddingEndpointOpenAI(
headers: {
Accept: "application/json",
"Content-Type": "application/json",
...(apiKey ? { Authorization: `Bearer ${apiKey}` } : {}),
...(decryptedApiKey ? { Authorization: `Bearer ${decryptedApiKey}` } : {}),
...defaultHeaders,
},
body: JSON.stringify({ input: batchInputs, model: model.name }),
Expand Down
16 changes: 12 additions & 4 deletions src/lib/server/embeddingEndpoints/tei/embeddingEndpoints.ts
Original file line number Diff line number Diff line change
Expand Up @@ -3,10 +3,11 @@ import type { EmbeddingEndpoint, Embedding } from "../embeddingEndpoints";
import { chunk } from "$lib/utils/chunk";
import { env } from "$env/dynamic/private";
import { logger } from "$lib/server/logger";
import type { EmbeddingModel } from "$lib/types/EmbeddingModel";
import { decrypt } from "$lib/utils/encryption";

export const embeddingEndpointTeiParametersSchema = z.object({
weight: z.number().int().positive().default(1),
model: z.any(),
type: z.literal("tei"),
url: z.string().url(),
authorization: z
Expand Down Expand Up @@ -35,10 +36,17 @@ const getModelInfoByUrl = async (url: string, authorization?: string) => {
}
};

type EmbeddingEndpointTeiInput = z.input<typeof embeddingEndpointTeiParametersSchema> & {
model: EmbeddingModel;
};

export async function embeddingEndpointTei(
input: z.input<typeof embeddingEndpointTeiParametersSchema>
input: EmbeddingEndpointTeiInput
): Promise<EmbeddingEndpoint> {
const { url, model, authorization } = embeddingEndpointTeiParametersSchema.parse(input);
const { model } = input;
const { url, authorization } = embeddingEndpointTeiParametersSchema.parse(input);

const decryptedAuthorization = authorization && decrypt(authorization);

const { max_client_batch_size, max_batch_tokens } = await getModelInfoByUrl(url);
const maxBatchSize = Math.min(
Expand All @@ -58,7 +66,7 @@ export async function embeddingEndpointTei(
headers: {
Accept: "application/json",
"Content-Type": "application/json",
...(authorization ? { Authorization: authorization } : {}),
...(decryptedAuthorization ? { Authorization: decryptedAuthorization } : {}),
},
body: JSON.stringify({ inputs: batchInputs, normalize: true, truncate: true }),
});
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,10 +2,10 @@ import { z } from "zod";
import type { EmbeddingEndpoint } from "../embeddingEndpoints";
import type { Tensor, FeatureExtractionPipeline } from "@huggingface/transformers";
import { pipeline } from "@huggingface/transformers";
import type { EmbeddingModel } from "$lib/types/EmbeddingModel";

export const embeddingEndpointTransformersJSParametersSchema = z.object({
weight: z.number().int().positive().default(1),
model: z.any(),
type: z.literal("transformersjs"),
});

Expand Down Expand Up @@ -36,10 +36,16 @@ export async function calculateEmbedding(modelName: string, inputs: string[]) {
return output.tolist();
}

type EmbeddingEndpointTransformersJSInput = z.input<
typeof embeddingEndpointTransformersJSParametersSchema
> & {
model: EmbeddingModel;
};

export function embeddingEndpointTransformersJS(
input: z.input<typeof embeddingEndpointTransformersJSParametersSchema>
input: EmbeddingEndpointTransformersJSInput
): EmbeddingEndpoint {
const { model } = embeddingEndpointTransformersJSParametersSchema.parse(input);
const { model } = input;

return async ({ inputs }) => {
return calculateEmbedding(model.name, inputs);
Expand Down
Loading