Robust machine learning interatomic potentials (MLIPs) that achieve accuracy comparable to the ωB97X-D3BJ/def2-TZVPP quantum mechanical method on non-covalent interactions.
wB97X-ML is built on NequIP, please install NequIP first.
- Python >= 3.9
- NequIP == 0.5.6
# Create and activate a conda environment (recommended)
conda create -n nequip-env python=3.10
conda activate nequip-env
# Install PyTorch with CUDA 11.3 (adjust based on your driver)
conda install pytorch==1.11.0 cudatoolkit=11.3 -c pytorch
# Install Nequip 0.5.6 and dependencies
wget https://github.com/mir-group/nequip/archive/refs/tags/v0.5.6.tar.gz
tar -xvzf v0.5.6.tar.gz
cd nequip
pip install .
- Download pretrained models.
git clone git@github.com:hnlab/wB97X-ML.git
cd models
# download all models from https://zenodo.org/records/15514804
pip install zenodo_get
zenodo_get 10.5281/zenodo.15514804 -g "[A-Z]*.tar.gz"
tar -xzvf ./*.tar.gz
-
Run Energy Prediction Example:
Note: Please refer to the corresponding model'sREADME.md
for applicable dimer.- Basic (No Multiprocessing)
in Windows/Jupyter environments wheremultiprocessing.Pool
is unstable.
cd scripts python predict_energy.py -xyz dataset/ACET_ETOH.xyz -md ./models -m ACET -od ./examples
- Parallel Accelerated
Leveragesmultiprocessing.Pool
for speedup on multicore systems.
cd scripts # 2 cores python predict_energy.py -xyz dataset/ACET_ETOH.xyz -md ./models -m ACET -od ./examples --mlp -w 2
- Basic (No Multiprocessing)
Training set: PDB-FRAGID